
Berner Fachhochschule (BFH), CH-2501 Biel, Switzerland

Re-Examination of the Swiss Post
Internet Voting System

Scope 1 “Cryptographic Protocol” and Scope 2 “Software”

Version 1.0.2

Rolf Haenni, Reto E. Koenig, Philipp Locher, Eric Dubuis

February 23, 2023

On behalf of the Federal Chancellery

1

Revision History

Revision Date Description

0.1 12.07.2022 Document initialization.

0.2 15.09.2022 Draft with Section 3 finished submitted to Federal Chancellery.

0.3 04.10.2022 Final draft with all sections finished submitted to Federal Chan-
cellery.

0.4 13.11.2022 Revised final draft with first addendum submitted to Federal
Chancellery.

0.5 16.01.2023 Revised draft with second addendum submitted to Federal Chan-
cellery.

1.0 20.01.2023 Final version submitted to Federal Chancellery.

1.0.1 17.02.2023 Updated final version with clarifications added to Addendum-2.

1.0.2 23.02.2023 Updated final version with further clarifications added to
Addendum-2.

2

Contents

Management Summary 4

1. Introduction 6
1.1. Relevant Documents . 6
1.2. Source Code . 8
1.3. Purpose, Scope, and Overview of Examination 10
1.4. Summary of Findings . 13

2. Review of Previous Findings 18
2.1. Scope 1: Cryptographic Protocol . 18
2.2. Scope 2: Software . 26

3. Systematic Analysis 33
3.1. General Problems . 34
3.2. Cryptographic Primitives . 41
3.3. System Specification . 80
3.4. Verifier . 92

A. Addendum-1: October Release 99
A.1. Overview of Changes . 99
A.2. Cryptographic Primitives . 101
A.3. E-Voting . 104
A.4. Verifier . 112

B. Addendum-2: November and December Releases 117
B.1. Overview of Changes . 117
B.2. Cryptographic Primitives . 119
B.3. E-Voting . 121
B.4. Verifier . 130
B.5. Recapitulation . 133

3

Management Summary

This report is the main outcome of our assessment of the Swiss Post e-voting system,
which we conducted in the period between June 2022 and January 2023. It is a contin-
uation of a similar assessment conducted one year before on earlier versions of both the
cryptographic protocol and the implemented system. The versions that were available
for the first assessment were clearly not yet ready for allowing the system to be used
in practical elections. In our reports, we listed the encountered problems and recom-
mended corresponding improvements. Generally, we had the impression of looking at an
unfinished project that was still heavily under construction.

In the meantime, numerous advancements have been made in many areas of both the
cryptographic protocol and its implementation. For example, we observed that the align-
ment between pseudocode algorithms and source code has been increased significantly,
that redundancies in the documentation and inherited problems from the earlier Scytl
system have been eliminated, and that the software structure and organization have been
improved substantially in many parts, which now makes the code base much more acces-
sible for inspections. We were also glad to see that important technology updates have
been made both on the server and the client side, and that the cryptographic part of the
implementation has been disentangled from certain non-compulsory dependencies.

Given this broad range of improvements, the subject of our second assessment has been
very different compared to the previous one. This allowed us to conduct our examination
in much greater detail. For example, we were now able to check the implementation of the
cryptographic algorithms on an almost line-by-line basis with the specification. We were
also able to look more profoundly into code quality aspects and to examine the general
software architecture. Our efforts were driven by the objective of making constructive
suggestions for improvements and simplifications.

Our assessment was divided into three evaluation rounds, roughly from June to Septem-
ber 2022, October to November 2022, and December 2022 to January 2023. Between
each round, we received a major update of both the specification and the code, in which
some of the findings of the previous rounds had already been taken into account. Keep-
ing track of all the changes made in each new release, while keeping a focus on the big
picture, was a great challenge during our mission. The structure of this report, with
a detailed discussion of the first evaluation round in the main part and corresponding
discussions of the received updates in two addendum sections, reflects the difficulties of
this process.

Despite the numerous improvements made to the system that we inspected in 2021,
our general impression of looking at an unfinished project has not changed much. The
new releases that we received between October and December still contained a large
number of substantial changes at various places across the whole system, including the
documentation. From a system that is close to reaching an important milestone in
the project roadmap, we would expect to observe only minor last-minute changes, but

4

in the present case, quite the opposite was true. The re-introduction of the write-ins
functionality in the November release is an example of a complex and subtle topic that
carries the risk undesired security problems.

Instead of adding new enhancements to the system, we would have preferred to see fur-
ther improvements based on our findings and recommendations from the first evaluation
round. Certain critical topics, for example the possibility of attacks against the entropy
source, have still not been addressed properly. This particular problem was already a
major concern in our report from last year, and we repeated our warnings in the new
report about the first evaluation round. To us a least, the status of the current system
that is available in January 2023 is therefore quite unsatisfactory: some of our findings
have been addressed, some have not been addressed, and some new findings came up
only with the latest releases shortly before finishing this report.

Given the volatility that is still present in the current system, it is difficult to draw a
conclusive verdict about it. However, in the light of the findings listed in this report,
we do not think that the system already fulfills all the requirements from the legal
ordinance. Without further improvements, it should therefore not be approved for legally
binding elections, except possibly for testing purposes under the umbrella of a limited
electorate.

5

1. Introduction

This examination report lists the findings of our 2022 re-assessment of the Swiss Post e-
voting protocol and its implementation. We have conducted essentially the same type of
work last year for the protocol and system versions that were available in July 2021. Our
final reports on Scope 1 (cryptographic protocol) and Scope 2 (software) were delivered
to the Federal Chancellery (FCh) in March 2022. Both documents were published on
the FCh’s web page on April 20, 2022, together with the reports from other experts.1 In
the meantime, the Swiss Post has implemented numerous improvements, which mostly
address the findings discussed in the last year’s reports.

We have been assigned with this re-assessment task of by the Federal Chancellery in
June 2022 for a period of approximately seven months. We submitted a first draft of our
report on September 15, 2022, to the Federal Chancellery, a second draft on October 4,
2022, a third draft on November 13, 2022, and the final draft on January 15th, 2023.
This stepwise procedure allowed us to clarify and finalize the document based on the
feedback that we already received from both the Federal Chancellery and the Swiss Post.
And it allowed us also to review the latest updates of the specification and the code, in
which certain of our findings and recommendations from the first, second, and third draft
have been addressed already. This part of our evaluation is described in two separate
addendum sections of this document. In contrast to our last year’s reports, we agreed
with the FCh to include our Scope 1 and Scope 2 findings in a single report.

The content of this document has been worked out jointly by the listed authors from the
Bern University of Sciences and independently of any other group of people. During our
mission, we have been in loose contact with both the Federal Chancellery and the Swiss
Post, mainly for obtaining clarifying information on certain topics. At the beginning of
our mission, on June 26, 2022, we were invited to an informal visit of the Swiss Post
development team in Neuchâtel. On that occasion, we were given a summary of the
current development process and the opportunity to discuss some of the major changes
and improvements compared to the last year’s version. The participating developers and
project managers were all remarkably eager and open to share with us their views of the
project and to discuss all sorts of technical questions. This informal visit thus turned
into a perfect kick-off meeting for our assessment.

1.1. Relevant Documents

To conduct our assessment, we had to consider the new version of the Federal Chancellery
Ordinance on Electronic Voting (OEV) and two related documents, its annex and an
explanatory report, which contains additional clarifying information. From the Swiss
Post, we received five relevant specification documents, which are all publicly available

1See https://www.bk.admin.ch/bk/en/home/politische-rechte/e-voting.html

6

https://www.bk.admin.ch/bk/en/home/politische-rechte/e-voting/ueberpruefung_systeme.html

in various repositories of the swisspost-evoting group on gitlab.com.2 This is therefore the
list of relevant documents for this report:

• [OEV] Federal Chancellery Ordinance on Electronic Voting, Federal Chancellery
FCh, July 1, 2022

• [OEV Annex] Federal Chancellery Ordinance on Electronic Voting – Annex on
Technical and Administrative Requirements for Electronic Voting, Federal Chan-
cellery FCh, July 1, 2022

• [ExpRep] Partial Revision of the Ordinance on Political Rights and Total Revision
of the Federal Chancellery Ordinance on Electronic Voting (Redesign of Trials) –
Explanatory report for its entry into force on 1 July 2022, Federal Chancellery FCh,
July 1, 2022

• [CryptPrim] Cryptographic Primitives of the Swiss Post Voting System – Pseudo-
code Specification, Version 1.0.0, Swiss Post Ltd., June 24, 2022
ñ Updated to Version 1.0.1 on October 3, 2022 (see Appendix A)
ñ Updated to Version 1.1.0 on October 31, 2022
ñ Updated to Version 1.2.0 on December 9, 2022 (see Appendix B)

• [SysSpec] Swiss Post Voting System – System Specification, Version 1.0.0, Swiss
Post Ltd., June 24, 2022
ñ Updated to Version 1.1.0 on October 3, 2022 (see Appendix A)
ñ Updated to Version 1.1.1 on October 31, 2022
ñ Updated to Version 1.2.0 on December 9, 2022 (see Appendix B)

• [VerSpec] Swiss Post Voting System – Verifier Specification, Version 1.0.1, Swiss
Post Ltd., August 19, 2022
ñ Updated to Version 1.1.0 on October 3, 2022 (see Appendix A)
ñ Updated to Version 1.2.0 on October 31, 2022
ñ Updated to Version 1.3.0 on December 9, 2022 (see Appendix B)

• [ProtSpec] Protocol of the Swiss Post Voting System – Computational Proof of
Complete Verifiability and Privacy, Version 1.0.0, Swiss Post Ltd., July 29, 2022
ñ Updated to Version 1.1.0 on December 9, 2022 (see Appendix B)

• [ArchDoc] E-Voting Architecture Document, Version 1.1.0, Swiss Post Ltd., July
14, 2022
ñ Updated to Version 1.2.0 on December 9, 2022 (see Appendix B)

For understanding the requirements defined in [OEV], [OEV Annex], and [ExpRep] as
precisely as possible, we have mainly looked at the legally binding document versions in

2See https://gitlab.com/swisspost-evoting.

7

https://gitlab.com/swisspost-evoting

German. However, the terminology and citations used in this document are all taken
from the available English translations.

Another important source of information for this report were the 2021 reports from other
experts, particularly the ones from Bryan Ford, from Thomas Haines, Olivier Pereira,
and Vanessa Teague, from David Basin, and from Aleksander Essex. For each of these
reports, including our own reports on Scope 1 and Scope 2 [HKLD22b,HKLD22c], Swiss
Post published individual response documents for discussing the findings that are not yet
addressed in the current version. The references to the response documents of our own
reports are the following:

• [ResScope1] Response to examination report by BFH – Scope 1 Cryptographic Pro-
tocol, Swiss Post Ltd., April 4, 2022.

• [ResScope2] Response to examination report by BFH – Scope 2 Software, Swiss Post
Ltd., April 4, 2022.

In Section 2, we will look at the findings from our last year’s assessment and discuss
from our own perspective whether in the meantime they have been resolved adequately
or not. The response documents published by Swiss Post were a useful starting point for
this task.

1.2. Source Code

Since August 2021, Swiss Post publishes the complete source code of the system on
gitlab.com. Corresponding repositories are located within the group swisspost-evoting,
i.e., at the same location where the protocol and system documentations can be found.3

Figure 1 shows a screenshot of the group’s GitLab web page, which shows the sys-
tem’s three main components e-voting, crypto-primitives (including crypto-primitives-ts and
crypto-primitives-domain), and verifier. Until recently, code updates for these components
have been uploaded regularly, sometimes on a weekly or even daily basis. A first Ver-
sion 0.15.0.0 of the two main cryptographic components crypto-primitives and e-voting
have been released at the beginning of our assessment on June 18, 2022, whereas Ver-
sion 1.0.0.0 of the verifier component is available since August 19, 2022. The overview
of the GitLab commit histories in Figure 2 summarizes the updates released since then
(note that not all releases were officially announced).

The frequent release of updates was a challenge during the first weeks of our mission,
because it meant to re-examine areas of the code that we already analyzed. However, we
tried to keep track of the relevant changes and adjusted our report whenever necessary.
The statements made in Sections 1 to 3 of this report are therefore tied to the versions as
listed in Table 1. The latest updates of the code from October, November, and December
2022 are discussed separately in Appendices A and B, respectively.

3See https://gitlab.com/swisspost-evoting.

8

https://gitlab.com/swisspost-evoting

Figure 1: The GitLab project web page with links to the three main components.

Code Library Version Date Commit (SHA-1 Fingerprint)

e-voting 0.15.3.0 July 26 bd755b21d460bd3ca29b176c02d7d515e121afa5

crypto-primitives 0.15.2.3 August 8 510b31005abf1847e0e1add09d1c04441ea2fff7

crypto-primitives-ts 0.15.2.3 July 20 9c902e7cd372004fcd05bd6ef7705e864f38245a

crypto-primitives-domain 0.15.2.5 August 12 31283d5f57133fac36fa7f157c6f6a34517bb319

verifier 1.0.0.0 August 19 7aed568c5b98ed51b23738fad981316bac419291

Table 1: Code versions of components as examined in this report.

The whole system code base is a huge collection of files. The core library e-voting, for
example, consists of 2’068 Java and 293 JavaScript files with a total of more than 150’000
actual code lines. Table 2 gives an overview of the code base in terms of number of files
and number of lines (code, comments, blanks). Compared to last years’s code base, the
total number of actual code lines has decreased by approximately 3.7% from 208’113
to 200’451. This is an indication that the refactoring process recommended in our last
year’s report has been conducted successfully, at least in certain areas of the code.

The e-voting component is a multi-module Maven project with a total of eleven Maven
submodules. An overview of these submodules is given in Figure 3, which shows an
excerpt of the component’s pom.xml file. The components crypto-primitives, crypto-
primitives-ts, and crypto-primitives-domain are (non-modular) Maven projects on their
own, whereas the verifier component consists of four submodules. We were able to install
and build them all in our IDE without considerable difficulties. During the building
process, dependencies to external libraries were resolved automatically. The possibility
of examining and running the code in our IDE without any broken dependencies was
important for conducting our analysis efficiently.

The above screenshots, SHA-1 fingerprints, and code statistic represent the project state

9

24
.6

.2
2

24
.6

.2
2

24
.6

.2
2

24
.6

.2
2

19
.8

.2
2

Date of public anouncement

Figure 2: Commit histories of the GitLab projects with dates of public announcements.

in mid-August 2022. Our evaluation in Sections 2 and 3 refers to these versions. A
major update of the whole project has been released on October 1, 2022, moving from
pre-release versions 0.15.x.x to a first major release 1.0.0. This suggests that the project
has reached an important milestone, indicating that the software has all major features
and is considered reliable enough for general release. However, two other project updates
have been released in early November and early December, moving from versions 1.0.0
to 1.1.0 and 1.2.0, respectively. At the time of finishing this report in January, 2023, we
have already looked at these updates, but the discussion is contained in separate sections
of this document (see Appendices A and B).

1.3. Purpose, Scope, and Overview of Examination

In a document called “Audit Concept v1.4 ”, the Federal Chancellery describes the goals
and rules for preparing, conducting and reporting the examination. This document,
which is an updated version from last year’s examination, has been given to both the

10

Code Library Language Files Lines Code Comments Blanks

e-voting
Java 2068 189966 125532 28912 35522
JavaScript 293 38193 25978 5647 6568

crypto-primitives Java 255 35392 22428 7578 5368

crypto-primitives-ts TypeScript 90 19388 9284 7533 2571

crypto-primitives-domain Java 98 9198 5701 1918 1579

verifier
Java 176 16862 10622 3702 2538
JavaScript 3 379 325 34 20
TypeScript 18 1010 581 330 99

Total: 3001 310388 200451 55654 54265

Table 2: Number of files and code lines in the given libraries.

Figure 3: The file pom.xml from the multi-module Maven project evoting.

examiners and the examinees. It defines the general purpose of the examination as
follows:

“In the context of the assessment of the Swiss Post system, the experts shall
answer the following questions:

– Are the system, its development and operation compliant with the legal
requirements [. . .]?

– Are the measures taken to mitigate risks effective?
– Which improvements could be made for the sake of security, trust and

acceptance?”

The same document also defines the specific examination purposes and goals for all four

11

examination scopes. Relevant to our assessment are only the first two scopes:

Scope 1: “The protocol must fulfill the requirements listed in Chapter 2 of the
annex of the [. . .] OEV.”

Scope 2: “The software of the system including the auditor’s technical aid
must fulfill the requirements listed in Chapters 2 to 25 of the annex of the
draft OEV and adequately support the protocol [. . .]. The mapping between
a requirement in those paragraphs and the place [. . .] where it is fulfilled
shall be provided by the examinees before the examination. Functions whose
trustworthiness is decisive for the effectiveness of verifiability as per draft
OEV, must be examined in detail on the basis of the source code and the
cryptographic protocol. Moreover, a sample of the functional tests documented
and executed by the developer are to be executed by the examiners to validate
their results. The sample shall be selected by the examiners on the basis of its
coverage of security functions and the contribution of these functions to risk
mitigation.”

In a direct communication from the Federal Chancellery on April 13, 2022, the general
goals of our mission were summarized as follows:

“We would like you to perform the examination and write an examination
report on the following scopes:

1. Cryptographic protocol
2. Software:

b) Assess the code quality and security
c) Asses the documentation quality
d) Assess the alignment between software development products
e) Assess the implementation of the protocol
f) Assess the functionalities”

In our last year’s mission, we put a strong focus on the cryptographic protocol (Scope 1),
and so did many of the other experts. In Section 2, we take the documented findings
from our report [HKLD22b] as a starting point for the re-assessment, with the goal of
providing an updated overview of the protocol’s critical parts and potential discrepancies
to the requirements of the OEV and its annex.

In Scope 2, the main goal is to assess the code and documentation quality, the alignment
between specification and code, and the correct implementation of the protocol. The
results of our systematic and rigorous code analysis is documented in Section 3. We
provide numerous recommendations and proposals for improvements to cope with the
encountered problems. As already mentioned, in Appendices A and B we will revisit
some of the raised issues in the light of the latest software and documentation releases.

12

1.4. Summary of Findings

In our first assessment of the Swiss Post Internet Voting System in 2021, we had the gen-
eral impression of having examined an unfinished project. It seemed obvious that many
critical parts of both the specification and the code were still under construction. The
system implementation, for example, still included redundancies and inherited problems
from earlier versions adopted from Scytl. The transition from these earlier versions to a
clean, compact, and robust system and code base was clearly not yet completed.

The new system and documentation versions that were available for the 2022 re-assessment
are clearly a big step forward in this process. Many of the encountered problems have
been either solved or substantially improved. For example, we were very pleased to
see that the redundancies in the protocol specification, which resulted from spreading
the protocol description and pseudocode algorithms across two different documents, have
been eliminated. We were also glad to observe that the project structure and organization
have been improved substantially in many parts, which now makes the code base much
more accessible for inspections. It is still very large in size (approximately 200’000 lines
of effective code), but for example locating the code implementing a specific pseudocode
algorithm is no longer a noteworthy difficulty. Code readability has also benefited from
removing complex frameworks such as Spring Batch from the cryptographically relevant
part of the code. Furthermore, the whole Java code base has been migrated to Java 17.

These improvements, which result in large parts from the feedback of the 2021 examina-
tions reports, demonstrate the importance of making everything publicly accessible and
the benefit of involving international experts in the examination. This generates a fruit-
ful platform for collecting feedback from many different external viewpoints. Relative to
our last year’s examination, we have slightly shifted the focus of our own viewpoint from
conceptual aspects of the cryptographic protocol towards the details and quality of the
code. Therefore, we spent great efforts in examining large parts of the code base on an
almost line-by-line basis.

The main result of this thorough analysis is a relatively large list of mostly minor re-
marks with corresponding recommendations for improvements. We also detected some
more fundamental problems in the software design, which from our perspective negatively
impact the overall readability and quality of the code. Some of these design problems
are related to conceptual questions, which possibly could be addressed more carefully.
Furthermore, in a few areas of the specification and the code, we see a large poten-
tial for simplifications. Finally, we also encountered two components that—for different
reasons—give the impression of being unfinished. In the following subsections, we shortly
summarize our principal findings in each of the above categories.

Before starting the discussion of the principal findings, we must stress that we are fully
aware of the Swiss Post’s official statements about the next steps in their project roadmap,
for instance in the main README.md file of the e-voting component, which contains a
list of known issues and future work (see Figure 4). This list includes, for example, a

13

statement about the planned migration from AngularJS to Angular, which is exactly what
we criticize in one of the topics discussed below. [updated in October release] Another
official source for Swiss Post’s project roadmap is the file Product_Roadmap.md from
the documentation repository, which contains similar statements. Generally, we would
appreciate if Swiss Post would commit to its roadmap for future releases even more firmly,
for example by specifying expected release dates and feature lists.

Figure 4: List of known issues and future work from the project’s main README.md file.

Source Code Analysis
In our systematic analysis of the source code, we put a special focus on detecting
any sort of discrepancy between algorithm specification and source code. Given the
fact that the alignment is now much more straightforward compared to last year’s
version of the system, we decided to look more at all the details by inspecting the
code almost line by line. Unfortunately, we found that there are still numerous
minor and mostly unnecessary discrepancies. Clearly, by applying a more careful
attitude towards getting all the details right, most of them could have been avoided
easily. All these discrepancies with recommendations for improvements are listed in
the tables given in Subsections 3.2 to 3.4. Considered separately, a single entry from
these tables is almost not noteworthy, but the sum of all the entries is what makes
it a significant finding and something to improve in future versions.

Another problem detected during our code analysis is the lack of an adequate
toolbox for dealing with mathematical objects such as tuples, vectors, and matri-
ces. While they are fundamental for describing the protocol and the pseudocode
algorithms in the specification documents, they are mostly implemented using stan-
dard Java data structures such as lists or maps. A problem closely related to this
is the imperfect implementation of immutability, which is fundamental for making

14

code libraries robust, thread-safe, and easy to test. An example of this imperfect
implementation is the widespread use of standard Java arrays for the representa-
tion and computation of byte sequences, instead of abstracting them into a proper
immutable Java class. These are the topics, where we see a huge potential for im-
proving the code quality at its very core. For a more detailed discussion, we refer to
Subsection 3.2.1

Conceptual Problems
On a more conceptual level, we encountered a few problems that might be considered
for further improvements. Something that affects both the specification and the
code in the same manner is the lack of a proper definition of an algorithm’s context.
We agree with the general idea of distinguishing contextual parameters from actual
parameters, but then the borderline between them should be made crystal clear.
Unfortunately, this is not the case in the current version of the system. Some
variables, for example, appear both as contextual and actual parameters, depending
on the algorithm. Furthermore, it is not always clear how context variables are
transmitted from one party to another and how their integrity is guaranteed. In the
Java implementation, we have found many different ways of passing context variables
to the methods implementing the algorithms. This inconsistent way of handling the
context in the code, which seems to be the result of an unclear concept, considerably
affects code readability. A detailed overview of the current context variables and a
discussion of the existing problems can be found in Subsection 3.1.2.

Another important conceptual problem is the current election result consisting
of decrypted (but not decoded) lists of prime numbers. This is clearly not the out-
come that one would expect to obtain from a voting system. Here again, we think
that a clear and more thoughtful definition of a fundamental concept is missing.
This has some important consequences, for example when it comes to perform the
verification process at the end of an election, which currently does not include the
decoding. As discussed in Subsection 3.1.3, this may invite an attacker to mod-
ify or infiltrate the mandatory decoding table and thus completely circumvent the
verification process.

Potential for Simplifications
Given the size of both the protocol specification and its implementation, the cur-
rent system is undoubtedly a very complex construction. To improve the current
situation, we were constantly looking for potential simplifications while conduct-
ing our analysis. Fortunately, we found quite a few of them in different areas of
the specification and the code. Here is a quick summary of the most important
simplifications:

• Set the Bayer-Groth shuffle proof parameters to n “ N and m “ 1 and remove
all unnecessary sub-algorithms from both the specification and the code.

• Remove the isProbablePrime pseudocode algorithm and all its sub-algorithms
from the specification. [updated in November release: all algorithms removed]

• Eliminate the voting server from the protocol specification by delegating its

15

two simple tasks to the voting client.

• Substitute the terms return-code control component (CCR) and mixing control-
component (CCM) by control component (CC).

• Eliminate the primes mapping table pTable from the specification and the code.
Instead, call a deterministic algorithm at each occurrence, which derives the
primes from the group parameters.

• Remove the unnecessary encryption layer around the partial choice return
codes, which is still present “for historical reasons” [SysSpec, Section 5.1.4].

• Either implement write-ins comprehensively, or remove them completely. In the
latter case, replace the implementation of multi-recipient ElGamal encryption
by ordinary ElGamal encryption.

• Use the ballot box IDs bb uniquely for context separation purposes in the zero-
knowledge proofs. Eliminate corresponding lists Lbb,j and Lbb,Tally from the
protocol (currently they create unnecessary side-effects in some algorithms).

• Migrate the remaining legacy code from the cryptolib and cryptolib-js libraries,
following the statements “This library is deprecated [. . .] ” and “no longer used
for the implementation of the protocol ” [ArchDoc, Section 3.2 and 5.10.1].

Note that most of the above simplifications can be implemented without losing
any of the necessary functionalities or properties of the system (some of them are
dispensable relics from the earlier Scytl system). Clearly, implementing them all in
a strict and comprehensive manner will greatly decrease the complexity and size of
the current system. This would help to further improve the auditability of both the
protocol specification and the source code, and it would follow the “Keep things as
simple as possible” (KISS) principle as imposed in [ArchDoc, Section 8.1].

Unfinished Components
The current JavaScript implementations of the voter-portal and secure-data-manager
modules still depend on the outdated AngularJS framework, which has officially
reached the status of an end-of-life (EOL) product on December 31, 2021. Besides
not getting further updates or support in the future, there are still known vulnerabili-
ties in Version 1.8.2 from October 21, 2020 (currently used in the secure-data-manager
implementation), and in the final Version 1.8.3 from April 8, 2022 (currently used
in the voter-portal implementation).4

As the following statements from the architectural document, the README.md
file from the e-voting repository, and the response document to our last year’s findings
show, this is a known but still open issue:

“Migrate the voter portal and secure data manager from AngularJS to
Angular as AngularJS is end of life as of January 2022.” [ArchDoc, Sec-
tion 9.1.6]

4See https://security.snyk.io/package/npm/angular.

16

https://security.snyk.io/package/npm/angular

“The voter portal [. . .] and the Secure Data Manager frontend are built
using AngularJS. We will migrate these components from AngularJS to
Angular.” [README.md, Known Issues]

“The migration will happen before the e-voting system goes live, but it has
not been addressed so far for priority reasons.” [ResScope2, Section 2]

The fact that the migration from AngularJS to Angular is still pending in the system
under evaluation is quite surprising. [updated in October release] We think that the
voting client, because it is trustworthy for vote privacy by definition, should get
special attention in any security-related respect, including the management of its
dependencies. We agree that the dependency to AngularJS is not directly related to
cryptography, but using a EOL framework for building security-critical software in
domains such as e-voting is clearly against all rules of best practice. It furthermore
violates one of the project’s general architectural principles: “Maintain dependency
freshness and regularly advance to the latest version of dependencies” [ArchDoc,
Section 8.1].

The second apparently unfinished component is the verifier, even if the cur-
rent version number 1.0.0.0 suggests something else. For example, we were quite
surprised to receive an update of the verifier specification on August 19, i.e., in
the middle of our assessment period, which included substantial changes such as
an additional pseudocode algorithm. The latest version of the verifier specification,
however, is still underspecified, with certain pseudocode algorithms containing vague
textual descriptions of certain tasks instead of precise executable instructions and
operations. According to the system’s software development process as illustrated in
[ArchDoc, Figure 28], the definition and improvement of the algorithm specification
always comes in the first place, not the reviewing and adjustment of the code. In
case of the verifier, where the specification lags behind the code at different places,
we observed the inversion of this fundamental development principle.

17

2. Review of Previous Findings

In this section, we review some of the principal findings from our last year’s reports. As
already mentioned, many of the encountered problems have been adequately addressed
in the current system. Put together, these improvements provide a big step towards
a system that eventually may be approved to fulfill the OEV requirements. While we
acknowledge the implemented improvements and appreciate the general direction the
project has taken, we regret that not all of our concerns have been taken into account.
In the response documents for Scope 1 [ResScope1] and Scope 2 [ResScope2], Swiss Post
addresses the unresolved findings and explains whether and how they will be taken into
account in the future according to their analysis. We understand that findings of lower
priority can possibly be postponed, but we also think that there are still some findings
of higher priority, which should have been addressed in the current system.

In this section, we follow the given structure of our previous reports to re-examine the
findings one by one in the light of the current system and the responses received from
Swiss Post. In Subsection 2.1, we walk through the findings related to Scope 1 (Cryp-
tographic Protocol) to see whether and to which degree they have been addressed, and
we do the same in Subsection 2.2 for the findings related to Scope 2 (Software). In both
cases, we will put the focus on the most critical open problems.

2.1. Scope 1: Cryptographic Protocol

In our 2021 report on Scope 1, we structured the results of our analysis into six areas of
“Critical Findings” [HKLD22b]. While we observe major improvements in three of them,
there are still at least two areas in which our concerns have not been addressed at all.
Under “Proving Vote Abstention”, the origin of the problem comes from the definition of
the corresponding OEV requirement, which arguably leaves some room for interpretation
(see Subsection 2.1.3), and this may justify the Swiss Post’s decision not to address it.
Under “Vote Privacy of Voters With Restricted Eligibility”, however, we think that there
is no room for interpretation that would justify the current sub-optimal solution. From
our current perspective on the system after conducting the re-assessment, this is the main
open problem in Scope 1 from the findings listed in our report.

2.1.1. Missing Update to Draft OEV

At the time of the examination in 2021, the protocol specification was not yet updated to
the draft of the new OEV, which was already available during the assessment period. This
lack of synchronization created an awkward situation for the reviewers, because it meant
to evaluate the alignment of two documents, which were not directly meant to be aligned.
Therefore, we were forced to evaluate the alignment on a best-effort basis based on our

18

pre-knowledge about the protocol and its most recent adjustments. Retrospectively, this
was a major challenge in conducting the 2021 assessment.

By eliminating all the quotes and references to the old OEV and by adjusting the termi-
nology accordingly, this problem has been solved completely in [SysSpec, Version 0.9.7]
and [ProtSpec, Version 0.9.11] from October 15, 2021. Therefore, we fully agree with the
response given in [ResScope1, Section 2]:

“First, the BFH determined that the protocol contains references to an obsolete
version of OEV. In version 0.9.11 of the cryptographic protocol, published in
October 2021, Swiss Post updated all references in line with the latest draft of
OEV. This finding by the BFH has therefore been resolved and implemented.”
[ResScope1, Section 2]

2.1.2. Role of Auditors

According to the updated OEV, the auditors are explicitly allowed to perform their
checks “during the setup phase” and “after tallying”, but not in any of the other protocol
phases. In the protocol version from last year, however, the auditors were also involved
in the tally phase. This violation of the permitted responsibility was our main objection
against the suggested role of the auditors. In the current version of the protocol, by
re-organizing the process in the tally phase, this problem has been solved.

Other problems that we encountered were about the auditors’ decision making as a group
and the reporting of a detected failure. These problems are partially solved by excluding
the auditors from the tally phase, but they still exist at the end of the setup phase.
Figure 5 shows an excerpt from [SysSpec, Figure 6], which defines the auditors’ task of
verifying the configuration data received from the setup component. Interestingly, the
result of this verification is only communicated to the setup component itself. This raises
the following two questions:

• To the best of our understanding, the setup component is supposed to stop the
process in case of a reported failure, but what if the auditors’ response is simply
ignored?

• According to [OEV Annex, Section 2.2], the communication channel between the
setup component and the auditors is unidirectional, so how can the auditors’ re-
sponse be communicated to the setup component as depicted in Figure 5?5

Generally, we believe that here the protocol description is still not sufficiently accurate
with respect to handling the case of a failed verification. This includes the case of a
disagreement between the auditors, which must be resolved in one or the other way,

5We are aware of [ExpRep, Ziff. 2.1], where the auditors are allowed to carry out specific verification
tasks for the setup component. However, it remains unclear how to proceed with negative outcomes of
the tasks, as there is no back channel.

19

presumably by an offline dispute resolution procedure conducted by humans. We are
aware of the response given in [ResScope1, Section 4.1] and the discussion of Issue 13 in
the documentation GitLab repository, and we agree that disputes between auditors can
be resolved unambiguously, but we recommend addressing this important topic in the
system specification to clarify all the questions raised above.

Figure 5: The role of the auditors at the end of the setup phase according to [SysSpec,
Figure 6].

2.1.3. Proving Vote Abstention

Our proposal to introduce vote abstention codes, based on a strict interpretation of the
OEV requirement that “a voter who has not cast his or her vote electronically can request
proof [. . .] ” [OEV, Art. 5.2c] that no vote has been cast on behalf of the voter, has not
been taken into account. The main reason is the following statement from the Federal
Chancellery’s explanatory report:

“For reasons of efficiency, it is sufficient for the competent cantonal office to
confirm to the voter that no vote has been cast on their behalf.” [ExpRep,
Section 4.2.2]

We agree that this statement leaves enough room for interpretation to dismiss our pro-
posal. The following explanation for the decision not to consider abstention codes was
included in a draft of [ResScope1] from March 2, 2022. We regret that this statement has
been deleted from the final version, because it made the legitimate reasons for dismiss-
ing our proposal transparent (with “highlighted statement above”, it refers to the above
statement from the explanatory report):

“We will not implement abstention codes like the BFH proposed for the time
being. We base our protocol and solution on the highlighted statement above.”

20

Even if we do not question the legitimacy of this decision, we still believe that imple-
menting the confirmation of the “competent cantonal office” could be a big challenge in
practice, not only for the cantons operating this office, but also for the Swiss Post who
will need to equip them with the necessary tools. Unfortunately, no information on this
is given in any of the publicly available documents. All things considered, we still think
that implementing abstention codes would be the better and more general solution.

2.1.4. Underspecified Protocol Aspects

A major general issue in the specification documents from last year was the lack of
sufficient technical preciseness in some areas of the protocol, which left too much room
for interpretation. In the new version, great progress has been made in this matter,
partly by improving the explanations given in the documents, by simplifying certain
technical components, or by eliminating relics from earlier versions. In the remaining of
this subsection, we quickly review each of the topics raised in our report from last year.

Primes Mapping Table
The so-called primes mapping table pTable was completely unspecified. It appeared
magically at various places of the protocol. In [SysSpec, Section 3.4.2], a formal
definition of pTable as an injective mapping of voting options to prime numbers from
Gq is now given, and there are two pseudocode algorithms EncodeVotingOptions and
DecodeVotingOptions specifying the encoding and decoding of voting options based
on pTable. Unfortunately, these algorithms are never explicitly called in the protocol,
and we also couldn’t find their implementations in any of the system components.
This topic is therefore an example of a problem that has been addressed, but not to
a satisfactory degree. We will further discuss this topic in Subsection 3.1.3, where we
argue that pTable could be completely eliminated from the protocol without loosing
anything. This proposal is also included in the list of recommended simplifications
from Subsection 1.4.

Electoral Board Key Pair
The role of the electoral board in the protocol as a group of people receiving a private
key from the print office was problematical in various respects. With the introduction
of the setup component and the tally control component in [SysSpec, Section 2.8], the
solution is now quite different. Based on the human-generated passwords received
from the members of the electoral board, the setup component generates the public
key EBpk by calling SetupTallyEB (which internally generates corresponding shares
of the private key), whereas the tally control component derives the private key
EBsk by calling MixDecOffline. The corresponding information flow is depicted in
[SysSpec, Fig. 7] and [SysSpec, Fig. 7], respectively. Assuming a trustworthy setup
component, who has no intention to exploit its knowledge of the private key, this
is an acceptable solution. Note that the introduction of an offline tally component
is not an explicit OEV requirement, but Swiss Post defines its purpose as follows:

21

“We leverage the electoral board as an additional operational safeguard enforcing the
four-eyes principle for the final decryption of the votes” [SysSpec, Section 2.5].

Ballot Box
In earlier versions of the protocol specification, the term ballot box was used very
inconsistently. A clear definition seemed to be missing. In the new specification
document, a ballot box is an abstract notion for two lists, a list of unconfirmed votes
and a list of NC confirmed votes (see definition of election event context in [SysSpec,
Figure 5]). Note that whole electorate is divided into Nbb sub-groups (according
to given electoral constituencies), and the protocol is executed for each sub-group
separately. Each protocol execution defines its own ballot box, which are identified
over their ballot box IDs bbj (Base16 strings of length lID). This means that only one
ballot box ID, usually denoted by bb, is relevant for a given protocol run. Using this
identifier for context separation purposes in zero-knowledge proofs (together with
the election event identifier ee) corresponds to a best practice. So far, our objection
from last year’s report has been addressed properly.

A remaining problem comes from the lists of Lbb,j and Lbb,Tally, which con-
tain the IDs of the shuffled and decrypted ballot boxes. These lists are kept and
updated by the mixing and the tally control components, respectively. Currently,
the updating takes place as a side-effect of calling the algorithms MixDecOnline
and MixDecOffline. This is clearly a remaining conceptual mistake, because these
lists are completely irrelevant when each control component verifies the shuffle and
decryption results of the preceding control parties. Removing them is one of our
recommended simplifications in Subsection 1.4. Furthermore, we think that “ballot
box ID” is somewhat misleading, because each authority keeps its own ballot box,
and they are not always identical at all times, so bb can not be an identifier for all
of them. We suggest to replace it by “electorate ID” or something similar (the term
“ballot box” would then disappear almost entirely).

Logs
A relic from the original Scytl system was the concept of a secure log. In the version
from last year, these logs were largely unspecified, but they were used everywhere
to represent the parties’ state of knowledge at different stages of a protocol. In the
current version of both the protocol and the code, this concept and the term “log”
have been removed entirely.

Keystore and Start Voting Key
The protocol from last year did not specify when and how the voting client receives
the keystore VCksid. Now it is clear that the setup component uses GenCredDat to
generate the list VCks of all keystores and then sends them to the voting server
[SysSpec, Figure 6]. At the beginning of the voting session, i.e., after successfully
authenticating to the voting server, the keystore is sent to the voting client. We
regret that these initial messages are not shown in [SysSpec, Figure 8].

Another objection was related to the generation and the parameters of the
start voting key. The additional information given in [SysSpec, Section 3.5] shows

22

that the awareness for this important issue is now given, but the statement below
Table 11 about fixing the Argon2 parameters to “reasonably low values” is not a very
good response to our objection, especially since a factor of 1000 only corresponds to
approximately 12 bits, instead of the required 16 bits.

Authentication and Context Separation
Authentication was not sufficiently well described in earlier versions of the protocol
specification. By providing a comprehensive list of all the signed protocol messages
in [SysSpec, Tables 15–17], this problem has been properly addressed. The given
overview shows that now the setup component, the online control components, and
the tally component systematically sign their outgoing messages, and it defines for
each signature some context data, which is important for solving the context separa-
tion problem. Another solved problem is the size of the RSA signature keys, which
has been increased to 3072 bits for all security levels.

With respect to authentication and message integrity, we found two remaining
problems in the current protocol description. Something that still remains unclear is
the authenticity and integrity of the election event context. The problem here seems
to be more fundamental, because it is generally unclear how the context is defined
and transmitted to all participating parties. We will further discuss this problem
in Subsection 3.1.2, but we already want to stress that this is something that could
undermine the security of the system very profoundly.

The second remaining problem is the fact that the untrusted voting server also
signs two types of messages (called VotingServerEncryptedVote and VotingServerCon-
firm, see [SysSpec, Table 16]). We do not see the benefit of these signatures, because
receiving a signed message from an untrusted voting server has the same quality
as receiving a message from an unknown adversary. In Subsection 3.1.4, after dis-
cussing this issue more profoundly, we will recommend removing the voting server
from the protocol description.

Election Use Cases
A description of the supported election use cases and a clear definition of the result-
ing election parameters was missing in earlier versions of the available specification
documents. In [SysSpec, Section 3.3 and 3.4.1], the election parameters are now
relatively clear. The main two parameters are the number of voting options n and
the number of selectable voting options ψ satisfying 1 ď ψ ă n (the third parameter
δ̂ is irrelevant as long as write-in options are not supported). Therefore, without
giving further information, some readers may still conclude that the protocol only
supports single ψ-out-of-n elections, even if this is not at all the intention of the
system designers.

What is missing in the discussion is the fact that elections are often held simul-
taneously and that in simultaneous elections only a subset of the

`

n
ψ

˘

combinations
of voting options are allowed. In case two referendums are held in parallel, for ex-
ample, a combination that assigns two options to the first and zero options to the
second question is clearly an invalid vote. Unfortunately, the mechanisms for exclud-

23

ing such invalid combinations of voting option is discussed separately in [SysSpec,
Section 3.4.3]. We still think that these two discussions should be merged into one,
because otherwise it seems difficult to grasp the whole complexity of this topic.
Finally, for further clarifying the discussion of this topic, we recommend replacing
the elements of the current election event model (correctnessID, ciSelections,
ciVotingOptions) and the two Algorithms 3.4 and 3.5 by a more mathematical
approach, like the one that we outlined in our last year’s report.

In the current protocol documents, a description of the supported election use
cases from the Swiss context is still missing. A reference to a file ElectoralModel.md
on gitlab.com, which lists five different types of supported elections, is given in [ResS-
cope1, Section 4.2], but it does not describe the mapping of arbitrary combination of
such election types into the above election event model. The same file also mentions
the existence of “a set of Excel sheets containing all the features of an election”, but
a reference to these files is not given. Finally, [ResScope1, Section 4.2] contains a
promise that has not yet been delivered: “However, we will enhance the protocol
documentation in a future version to address the BFH’s finding”.

Write-Ins
In this question, it seems that we have reached some sort of a deadlock between the
Swiss Post, the Federal Chancellery, and us. In our report, we have expressed our
concerns that the inclusion of write-ins may have an impact on accepting a submit-
ted ballot as valid or not, for example in case of a malicious voter submitting a vote
for regular candidates in combination with non-empty fields for write-in candidates.
In [ResScope1, Section 4.3], a reference to a statement from [ExpRep, Section 4.2.1]
is given as a justification for not addressing this problem, but the quoted statement
only refers to the “blank text fields” for entering the write-in candidates, not to the
ballot as a whole. According to a direct communication, the Federal Chancellery
seems not to be worried much about our particular attack scenario, but this stand-
point does not match with our understanding of the OEV and its explanatory report.
An official clarification in either direction could contribute to finding a solution for
the current deadlock.

Another unsatisfactory situation is the current half-hearted implementation of
write-ins in both the protocol and the code. On one side, using multi-recipient ElGa-
mal encryptions, the ballots are ready to include votes for write-in candidates, and so
is the processing of these ballots during the tally phase. But on the other side, votes
for write-in candidates are completely ignored at the end of the election process (see
Subsection 3.1.3). Given that Swiss Post responds in [ResScope1, Section 4.3] with
“We do not plan to remove the write-ins, as this would exclude too many elections in
Switzerland, [. . .] ” to our recommendation to exclude write-ins from their current
system, we would have expected them to finish the implementation and doing it
properly. Generally, we think that unfinished or inactive functionalities should not
be the subject of any examination.

24

2.1.5. Vote Privacy of Voters With Restricted Eligibility

In case of a heterogeneous electorate, we learned from [SysSpec, Section 3.3] that voters
with different voting rights are grouped into separate subsets (called verification card
sets), such that in each subset, all voters have the same voting right. The protocol,
which by design cannot handle different voting rights in a single protocol run, is then
executed separately for each subset. This is what we have criticized in our report, be-
cause introducing such subsets may considerably diminish corresponding anonymity sets.
In an extreme case, the election result computed separately may then reveal sufficient
information for completely breaking the secrecy of all submitted votes.

The example given in [ResScope1, Section 4.4], where an electorate consisting of 1030
voters is divided into three groups of 1000, 20, and 10 voters, illustrates this problem. In
this case, election results are computed separately for each group using three simultaneous
protocol executions. In the smallest group of 10 voters, the size of the anonymity set has
been reduced by a factor of 103 compared to the original anonymity set. Vote privacy is
therefore violated accordingly, but only due to technical reasons.

The above example also shows the awareness of Swiss Post for this problem. However,
given the following statement from the response document, we think that there is still
some misconception with regard to the notion of privacy in electronic voting protocols:

“However, the described attack does not violate standard definitions of voting
privacy [. . .]: there is always the risk of a privacy breach if a ballot box
contains too few votes.” [ResScope1, Section 2]

The above quote also includes a reference to one of the most cited papers on formal
definitions for privacy in secure voting protocols [BCG`15]. Here is a quote from that
paper, which exhibits the misconception in the above statement:

“Recall that ballot privacy attempts to capture the idea that during its execution
a secure protocol does not reveal information about the votes cast, beyond what
is unavoidably leaked (e.g. what the result of the election leaks).” [BCG`15,
Chapter IV]

The point here is that a privacy breach can only occur, if the set of eligible voters has
been diminished artificially, because this automatically leaks information beyond what
is unavoidably leaked. But this is exactly what is happening in the current Swiss Post
voting system in examples like the one discussed above. In the light of our proposal for a
better solution in [HKLD22b, Section 2.5], we think that any sub-optimal solution that
is exposed to this problem cannot be justified.

In their response to this finding, Swiss Post argues that the cantons usually group the
Swiss citizens living abroad into one sufficiently large cantonal counting circle. But some

25

cantons may have other exceptions, for example young voters under 18 or permanent
foreign residents. In such cases, it may not always be possible to guarantee a minimal
size for the artificial counting circles, especially since a new voting channel will always
require time to gain popularity. Therefore, we want to stress again the importance of
this topic and recommend that Swiss Post will not wait too long for keeping its promise
to “implement it as proposed by the BFH in a later phase” [ResScope1, Section 4.4].

2.1.6. Legitimacy of Proof

Given the restricted time for conducting this assessment, we were not able to review the
security analysis in [ProtSpec, Version 1.0.0]. The changes made to the document are
listed in the file README.md on the documentation GitLab repository. They suggest
that several general improvements and clarifications have been made to address the
feedback received from the reviewers. The most obvious improvement is the removal
of the redundant protocol description in Section 10, which has been moved entirely to
[SysSpec] and [CryptPrim]. This simplification is very useful, because now it is clear that
the proof always refers to the real protocol. Our main general comment from last year’s
report, namely that in some aspects the proof was too strongly abstracted from the real
protocol, is therefore no longer valid. Apart from that, we cannot make any statements
about the status of the updated proof document.

2.2. Scope 2: Software

As the focus of our current mission has been on analyzing the code of the implemented
software, we can keep this subsection on reviewing the Scope 2 findings from last year
shorter than the previous section on Scope 1. The results of our analysis in Section 3
give a detailed overview of the current situation and list all the encountered problems.
Compared to the version from last year, the overall alignment between code and speci-
fication has been augmented considerably. There are also many apparent improvements
of the code quality, which makes the complex code base more accessible for auditors.

In Subsection 1.4, we have already summarized the remaining shortcomings of the current
system implementation. One general observation is the existence of a large number of
mostly minor discrepancies between pseudocode and Java code, which could have been
avoided by placing greater emphasis on the details. Almost all parts of the code are
affected by this. Another fundamental problem is the limited functionality of the current
mathematical toolbox, which is often an obstacle for achieving a better code quality.
From the other findings in our last year’s report, the synchronization problem has been
solved, whereas the potential vulnerability in case of a poor entropy source still exists.

In the review of the previous findings given below, we follow the structure and topics of
our last year’s report [HKLD22c, Section 2].

26

2.2.1. Deviations Between Protocol and System Specification

The system documentation from last year contained two descriptions of the cryptographic
protocol, one with less details (descriptive algorithms) and one with more details (pseu-
docode algorithms). In our report, we listed numerous discrepancies between the two
documents, for example with respect to the protocol’s message flow or the computa-
tions performed by the algorithms [HKLD22c, Section 2.1]. By completely deleting the
high-level protocol and algorithm descriptions from [ProtSpec], this problem has been
solved. The resulting removal of redundancy makes the current system documentation
much more accessible.

2.2.2. Deviations Between System Specification and Source Code

The code inspected during our last year’s mission seemed to be in a transitional state.
Certain parts of the code had obviously undergone a major revision compared to earlier
versions. Those parts were already very well aligned with the specification, whereas in
other parts, this alignment had not yet been realized. In the new version, it seems that
the transition process has been completed in almost all parts of the system, which means
for example that names of classes, methods, parameters, and local variables can now be
linked easily to the specification, and that there is a close match between the executed
code and pseudocode statements. In their response to our report, Swiss Post promised
to prioritize the alignment between code and specification:

“The alignment work is at the top of our priorities and will be achieved grad-
ually, starting with the central trustworthy components.” [ResScope2, Sec-
tion 2]

While we acknowledge the vast progress made in this regard, there are still many small
and mostly insignificant differences between code and specification, which prevents the
matching from being perfect (see Subsections 3.2 to 3.4).

Another problem in the previous version of the system was the existence of source code
that seemed vital for the implementation of the cryptographic protocol, but for which no
pseudocode existed. The cleansing procedure was the most significant example for this
type of discrepancy, but this particular element of the implemented protocol does not
exist anymore. In the current implementation, we found a few places where the verifier
specification still lags behind the code (see Subsection 3.4), but otherwise this problem
seems to be solved (see Subsection 2.2.4).

2.2.3. Crypto-Primitives

In our analysis of the former crypto-primitives component, we made a few remarks on
different aspects. Many of them have been addressed in the current version:

27

• Preconditions are now consistently listed under the heading Require. In most
cases, they are implemented in a strict and systematic manner.

• In the implementation of the proof generation and verification algorithms, the
concatenation from iaux to haux has been replaced by composition.

• The interface CryptoPrimitives and the class CryptoPrimitivesService have
been removed.

• Some inconsistencies in the method names have been eliminated.

We also made some recommendations to simplify the code of the component, for example
by reducing the Bayer-Groth proof to the special case m “ 1 and n “ N , by introducing
an explicit context object that is passed to all methods as additional parameter, or by
defining the algorithms as static methods which operate on pure data objects. These
recommendations have not been implemented. In Subsection 1.4, some of them appear
again on the current list of recommended simplifications.

2.2.4. Underspecified Concepts and System Components

In our report from last year, we also made a few remarks about some components that
were apparently relevant for the cryptographic protocol and its implementation, but
which were not sufficiently well specified. Some of these components have been simplified
or removed:

• Objects of type SecureLog were included in the implementations of the CCR and
verifier components, but the concept of a secure log was not well thought out. In
the meantime, secure logs have been removed from both the protocol specification
and the code (see Subsection 2.1.4).

• The sharing of the electoral board’s private key EBsk using algorithm SplitSecret-
Shares was very unclear. In the current protocol, EBsk is derived from a set of
human-generated passwords, which makes the sharing procedure and algorithm
obsolete.

• Another unclear procedure was the transmission of the keystores and other election
data to the voting client at the beginning of the voting process. As already discussed
in Subsection 2.1.4, the given explanations are now much better, even if the exact
data flow is still not shown in the protocol diagram of the voting phase [SysSpec,
Figure 8].

• Symmetric encryption was not sufficiently well specified. In the pseudocode al-
gorithms GenCiphertextSymmetric and GetMessageSymmetric, too many details re-
mained unspecified. This problem has been solved in the new versions of these
algorithms.

28

We also remarked that the exact shape and the initialization of the data structures
CMTable, pTable, and correctnessID were not always very clear. Unfortunately, this is
still the case in the current version of the system. For example, a definition for CMTable
is still not present in the whole specification document, whereas [SysSpec, Section 3.4.4]
about the correctnessID has not been improved much.

In the same comment, we also mentioned a lack of clarity with respect to the different
lists, which are managed by the control components for keeping track of the processed
votes. Unfortunately, they are still defined at different places of the document, and in
each case only a single sentence is given as explanation. Here is an overview of these
definitions (note that an additional list LgenVC,j and a key-value map LconfirmationAttempts,j
are present in the new version of the protocol):

[SysSpec, Section 4.1.3]: Algorithm GenVerDat

– “Partial choice return codes allow list” LpCC

[SysSpec, Section 4.1.4]: Algorithm GenEncLongCodeShares

– List of voting cards for which the control components decrypted the partial
choice return codes: LdecPCC,j

– List of voting cards for which the control components already generated long
choice return code shares: LsentVotes,j

– List of confirmed votes: LconfirmedVotes,j

– List of processed voting cards: LgenVC,j
– Key-value map of number of confirmation attempts per voting card:

LconfirmationAttempts,j

[SysSpec, Section 4.2.2]: Algorithm SetupTallyEB

– List of shuffled and decrypted ballot boxes: LBB,j

With respect to the implementation of these data structures, a more profound discussion
of the implemented general concept (keeping track of the current state) and an overview
like the one given above, possibly with better explanations for each item in the list, would
greatly improve the clarity of both the specification and the code.

2.2.5. Quality of Code

Measuring the quality of the code is generally a difficult task. On one side, there are
standardized measures for evaluating certain quality aspects, and great tools exist for
deriving these measures automatically from the code base, but on the other side, obtain-
ing good scores from these tools is often not the most important criterion. Knowing that
others had already analyzed the Swiss Post system using such tools, we decided not to
repeat this task. Instead we discussed a few problematical topics that we encountered
while looking at the code. In their response to our report, Swiss Post has underlined
their commitment to attain the best possible code quality:

29

“Swiss Post is working intensively to continuously improve the system. Any
software project has to be maintained to ensure the best quality and security.”
[ResScope2, Section 2]

From the topics discussed in our report, some have been addressed in the current version
and some not:

• The validation of input parameters was implemented very inconsistently, but this
is no longer the case in the current system. The only remaining problem is the lack
of a clear definition and consistent implementation of the context variables (see
Subsection 3.1.2).

• The existence of two very similar cryptographic libraries was very confusing. Given
that most functionalities have now been moved permanently from cryptolib to
crypto-primitive, this problem is almost entirely solved. However, we regret that
some remaining legacy code from cryptolib is still present (see recommended sim-
plifications in Subsection 1.4).

• In some cases, unusually long names (up to 45 characters) were used for classes,
methods, and variables. This affected the readability of the code considerably. We
still encountered some relatively long names in the current code base, but the most
extreme cases have been eliminated.

• Another obstacle for better code readability was the wide-spread application of
the Spring Batch framework and the large number of external Java and JavaScript
libraries. By removing Spring Batch from the cryptographically relevant part of the
code, the first problem is solved. However, the number of external dependencies
is still very large, for both Java (see pom.xml in the module evoting-dependencies)
and JavaScript (see for example package.json in voter-portal).

• Our last comment was about the using Java 1.8 and AngularJS, which were both
close to reaching their end-of-life status. By migrating the code to Java 17, the
first problem is solved, but the announced migration to Angular is still pending (see
Subsection 1.4). [updated in October release]

“Only one single dependency remains outdated (AngularJS), and it is im-
portant to mention that this dependency is not related to cryptography. The
migration will happen before the e-voting system goes live, but it has not been
addressed so far for priority reasons.” [ResScope2, Section 2]

In our current mission, by re-examining almost all parts of the code very carefully, we
encountered a few other code quality problems. The most obvious one is the sub-optimal
mathematical toolbox, which does not offer proper abstractions for important mathe-
matical objects such as tuples, vectors, or matrices (see Subsection 3.2.1). The poor
implementation of immutability is a related open problem.

30

2.2.6. Synchronization

In our 2021 report on Scope 2, we explained in detail why the synchronization of mes-
sages and their processing in a distributed system is fundamental for the correctness and
robustness of the overall system [HKLD22c, Section 2.6]. During the voting phase, for
example, a malicious voter or voting client may try to cast multiple ballots at the same
time, either to learn the choice return codes for more than one ballot or to provoke an
inconsistent state on the server. In the response to our report, Swiss Post mentioned
that they had already been working on this and that they wanted to further improve the
implementation and documentation:

“In release 0.13 (February 2022), we implemented a mechanism at database
level to ensure that the control components process messages exactly once, thus
preventing these types of synchronization attacks. We will further improve
this mechanism and document it properly for the next audit.” [ResScope2,
Section 4.2]

In the current version of the available documents, we found a discussion of this topic and
a description of the implemented solution in [ArchDoc, Section 10.1.2]. From analyzing
the proposed synchronization mechanism and its implementation, we conclude that this
problem has been solved adequately.

To ensure high availability of the system, multiple instances of each control component
run in parallel. This makes synchronization even more difficult, because it involves
multiple concurrent instances of the same component. This implies that the current
state of a component must be managed across all instances, for example by using a
shared database. The proposed solution of delegating the synchronization problem to the
database is therefore straightforward. In their implementation, Swiss Post uses classical
techniques such as optimistic and pessimistic locking. They also implemented a property
called exactly once processing, which guarantees that external messages are processed
exactly once. This prevents not only identical messages from being processed more than
once, but also similar messages (of the same type). For example, if a voter sends different
ballots simultaneously, then these ballots are recognized as similar messages and only one
of them will be processed.

2.2.7. Randomness

One of our major concerns in our report from last year were the vulnerabilities resulting
from potential attacks against the entropy source. Both the sever-side components and
the voting clients are affected by this problem. In most cases, a successful attack would
primarily affect vote privacy, but in case of the setup component, an adversary controlling
the entropy seed of the pseudo-random number generator (PRG) may be able to change

31

the election result without being noticed. Our discussion of this problem in [HKLD22c,
Section 2.7] was sufficiently profound, so we don’t want to repeat ourselves here.

Our discussion of this topic also included several recommendations for improvements,
but unfortunately, none of them has been implemented. The following statement from
the response document indicates that there might be some misconception:

“There is a well-known best practice in cryptography called “do not roll your
own crypto”, stating that one should rely on standard, well-tested crypto-
graphic methods instead of developing custom ones. [. . .] Cryptographic pseu-
dorandom number generators are available in most programming languages
and rely on the operating system to provide high-quality entropy sources.
Building a custom entropy collector and pseudorandom number generator
would violate the above-stated principle, and we prefer not to take any un-
necessary risks.” [ResScope2, Section 4.3]

We agree that one should not develop alternatives for standard cryptographic methods,
but this is not what we asked. The point is that a seed from a poor entropy source
can not cause any damage when using it for seeding or re-seeding a PRG, as long as
at least one high-entropy seed from another source has been available before or is used
simultaneously. In other words, it is always better to use as many entropy sources as
possible, even if some of them are poorly implemented.

At the moment, however, Swiss Post still delegates the whole security of the PRG to one
single entropy source, both on the server and on the client, and not even runs a health
test to detect the simplest types of failures. From all the remaining problems listed in
this report, which think that this is the most critical one. Especially on the client, where
a single line of infiltrated JavaScript code can render the standard PRG from the Web
Crypto API useless (see example discussed in [HKLD22c, Section 2.7]), the vulnerability
seems relatively easy to exploit, for example by attacking one of the numerous direct or
indirect external dependencies. Note that the proposed counter-measures of keeping a
reference to the PRG function in a private scope would be relatively easy to implement.

32

3. Systematic Analysis

To evaluate the current implementation in the light of the manifold improvements and
corrections made since the 2021 version of the system, we conducted an even more sys-
tematic analysis of both the protocol description and the available Java, JavaScript,
and TypeScript code. In the center of our attention were the algorithms as defined in
[CryptPrim], [SysSpec], and [VerSpec], and corresponding classes and methods found in
the code base. An obvious improvement compared to earlier versions is the adoption of
exactly the same algorithm names in the code. With respect to this particular aspect,
the alignment level reached in the current version is almost perfect. This advancement
is very helpful for efficiently locating the code lines in the code base that are responsible
for implementing a given algorithm.

The main content of this section is a systematic summary of all our findings and rec-
ommendations relative to all algorithms specified in the available documents. Our pre-
sentation of this summary is structured according to the available software components:
Subsection 3.2 analyses the crypto-primitives component, Subsection 3.3 the e-voting com-
ponent, and Subsection 3.4 the verifier component. In Subsection 3.1, we discuss some
general problems that we have encountered either in the specification or throughout the
code base. In each case, we provide recommendations for making corresponding improve-
ments.

Given the large number of problems found in all areas of both the specification and the
code, we believe that an additional round of carefully addressing all the points raised in
this section will be necessary to reach a satisfactory degree of documentation and code
quality. Note that the vast majority of the listed issues are not critical, and it should
be possible to fix or improve them easily given our comments and recommendations. In
the summaries given in Subsections 3.2 to 3.4, algorithms containing such non-critical
issues are marked in orange . There are also some algorithms containing critical issues
that are marked in red , for example if the desired matching between code and specifi-
cation is clearly violated. From our perspective, the improvement of these algorithms is
mandatory. Finally, for algorithms marked in green ,we have no recommendations for
improvements.

Note that we used the above colors to highlight the results of analyzing the August
release. Many of the problems encountered have been resolved in the November or
December releases (see Appendix B). In such cases, we added comments of the form
[updated in November release] or [updated in December release] to the text, but we
did not change the colors. Therefore, except in cases where additional text has been
added to these comments, the colors do not necessarily reflect the project state at the
end of this assessment.

33

3.1. General Problems

In this subsection, we describe some general problematical points in the current version
of the protocol and the system, which can not be attributed to a single algorithm or
a specific system component. Some of the raised issues are specific to either Scope 1
or Scope 2, but most of them affect both scopes. We believe that these issues should
be addressed for improving future versions of the system, even if they are possibly not
critical for the current system’s overall security.

3.1.1. Distinction between CCR and CCM

The specification still makes a relatively explicit distinction between two groups of control
components, return codes control components (CCR) and mixing control components
(CCM). While the CCRs are active during the setup and voting phase [SysSpec, Fig. 6,
8, 9], the CCMs are active during the setup and the tally phase [SysSpec, Fig. 7, 10, 11].
In the current version of the specification document, the distinction between the CCRs
and CCMs is defined as two different functionalities of a single entity:

“Conceptually, we distinguish two control component functionalities: [. . .] In
the specification, we refer to each functionality separately, even though the
control components are a single entity combining the CCR and CCM func-
tionalities.”

This statement on Page 15 of [SysSpec] is the only explanation that we found, which
expresses the fact that the CCRs and CCMs are no longer considered as distinct protocol
parties. In earlier version of the protocol, the distinction was always strict and explicit.

The definition of the CCRs and CCMs in the current protocol version as two function-
alities of the same party is quite confusing. For example, it is not clear how the main
input parameter vcMapj of the algorithm GetMixnetInitialCiphertexts is transferred from
the CCRs to the CCMs without considering them as a single protocol party. Also, in
a setting in which they are considered as distinct parties, it is not clear whether this is
compatible with the [OEV] trust model of at least one trustworthy control component in
a group of four control components.

The point here is that adhering to the terms CCM and CCR does not seem to generate an
obvious benefit in the current version of the protocol specification. We understand that
historically these terms were very important in the design of the protocol and the system,
but since this is no longer the case in the current version, we recommend eliminating them
entirely (replace CCR and CCM everywhere by CC).

34

3.1.2. Definition and Usage of Context

In principle, the separation of algorithm parameters into context variables and input vari-
ables is a very good design strategy to cope with the fact, that certain values remain fixed
over multiple invocations of the algorithm and others are different for each invocation.
A statement for describing this general guideline is included in all three specification
documents under “Conventions”:

“We designate values that do not change between runs as Context and variable
values as Input.” [CryptPrim, Section 1.1]

“Distinguish context (invariant) and input variables (different for each invo-
cation).” [SysSpec, Section 1.4], [VerSpec, Section 1.2]

Unfortunately, there is no clear definition of the context in any of the available specifi-
cation documents. By looking at the context variables of all algorithms, it is difficult to
recognize a clear and consistent plan of the context’s boundaries. To obtain a complete
overview, we compiled all context variables into one big list and sorted them according
to different categories. The tables shown below for each category are the results of this
compilation:

Algorithms and Algorithm Parameters
– Cryptographic hash function Hash

– Extendable output function XOF

– Authenticated encryption function AuthenticatedEncryption

– Authenticated decryption function AuthenticatedDecryption

– The signature algorithms, providing GenKeyPair and GetCertificate

– The signature algorithms, providing Verify

– The trust store, providing FindCertificate

– Argon2: Memory usage parameter m
– Argon2: Parallelism parameter p
– Argon2: Iteration count i

Security and Group Parameters
– The security level λ
– Group modulus p
– Group cardinality q
– Group generator g

35

– A commitment key ck

Length Parameters
– Identifier length lID

– Character length of the Ballot Casting Key lBCK

– Character length of the Base64 encoded hash output lHB64
– Character length of the Start Voting Key lSVK

– Character length of the Choice Return Codes LCC
– Character length of the Vote Cast Return Code LVCC

Identifiers and Indices
– Election Event ID ee

– Ballot box ID bb

– Verification card set ID vcs

– Vector of verification card set IDs vcs

– The CCR’s index j
– The other CCR’s indices ĵ

Election Parameters
– Number of voting options n
– Number of selectable voting options ψ
– Number of allowed write-ins + 1 for this specific ballot box δ̃
– Maximum number of possible voting options ω
– Maximum number of selectable voting options φ
– Maximum number of supported write-ins + 1: µ
– Actual voting options ṽ

– Encoded voting options p̃

– Correctness IDs of all voting options ciVotingOptions

– Correctness IDs of the selected voting options ciSelections

– Number or voters NE

Keys and Certificates
– Setup secret key sksetup

– Setup public key pksetup

– Election public key ELpk

– A multi-recipient public key pk

36

– Choice Return Codes encryption public key pkCCR

– The private key privKey

– The matching certificate cert

Lists and Maps
– List of generated voting cards LgenVC,j

– List of voting cards with decrypted partial Choice Return Codes LdecPCC,j

– List of voting cards LsentVotes,j

– List of confirmed voting cards LconfirmedVotes,j

– Key-value map of confirmation attempts per verification card LconfirmationAttempts,j

– List of shuffled and decrypted ballot boxes Lbb,j

– List of Partial Choice Return Codes LpCC

– List of shuffled and decrypted ballot boxes Lbb,Tally

The above compilation of the context variables shows the complexity of this topic, reveals
some problematical cases, and exhibits a potential for simplifications. The first category
Algorithms and Algorithm Parameters, for example, is something that could be defined
outside the context, for example in a special section of the specification document, which
discusses and defines the selection of the cryptographic primitives. Then we observe that
the second and third categories, Security and Group Parameters and Length Parameters,
define the system’s security, whereas the next two categories, Identifiers and Indices and
Election Parameters, define the current election. Thus, instead of having a single large
context, it would obviously make sense to distinguish between a security context and
an election context. For each algorithm, one could then simply define which of the two
contexts is required, without giving the whole list of context variables over and over
again. The potential for simplifications from introducing this simple distinction is worth
taking into account.

A problematical type of context variables are the ones listed under Keys and Certificates.
In cryptographic schemes, keys are usually important parameters of all fundamental
algorithms. It is true that for a given party, some keys may not change during an
election, but since keys are usually attributed to a single party, they should not be part
of a (possibly common) context. The most obvious cases of doubtful context variables
are the setup secret key sksetup in CombineEncLongCodeShares and GenCMTable and the
private key privKey in GenSignature. From our point of view, secret or private keys
should never be included in a context.

Even more problematical are the context variables listed under Lists and Maps, since
there are cases, in which these lists are modified during the execution of the algorithm.
For example in PartialDecryptPCC, elements are added to the list LdecPCC,j included in the
context. Conceptually, context variables should be immutable by definition, but this is
not the case in the given example. Generally, we recommend excluding data structures

37

such as lists or maps from any context to ensure that all algorithms are free from side-
effects.

Another problem related to the context variables is the fact that certain variables are
sometimes included in the context and sometimes in the regular list of input parame-
ters. Probably the best example of that kind are the group parameters p, q, and g. In
GenKeyPair, for example, they are defined as ordinary input parameters, but in GetCi-
phertext (and in many other algorithms), they are defined as context variables. Examples
of that kind can be found at many different locations. They demonstrate that the con-
cept of a context is not implemented in a rigorous and consistent manner, both in the
specification and the code.

A general problem with any context is the question of how to authenticate the values of
its variables. In our proposal from above, the security context could be initialized based
on a public seed and security level, whereas the election context could be signed by an
election administrator at the beginning of the setup phase. These are examples of the
two most obvious ways for the parties to achieve sufficient trust in the context variables.
Unfortunately, this important discussion is entirely missing in the current specification
documents. In [SysSpec, Section 3.3], for example, the definition of the election event
context says nothing about its distribution to the parties during the setup phase.

In the implementation of the algorithms, the context is not always handled in a clear
and consistent way. Without knowing the code, we would have expected to find a class
Context (or multiple classes such as ElectionContext or SecurityContext) somewhere
in the code, such that instances of these classes can be kept by each party for pass-
ing them as additional inputs to the algorithms. Unfortunately, this is not the case
in the current implementation. The closest abstractions of that kind are the classes
ReturnCodesNodeContext and VerificationCardSetContext in the e-voting compo-
nent, which consist of instance variables textttelectionEventId, verificationCardSetId,
ballotBoxId, numberOfWriteInFields, and numberOfVotingCards for the election pa-
rameters ee, vcs, bb, δ̃, and |vcs|, respectively, and a reference to a GqGroup instance
encryptionGroup.

In many cases, the context variables are passed as an additional parameter to the
method implementing the algorithm. For example, HashService::hashAndSquare de-
fines an additional argument of type GqGroup, which provides the context variables p
and q from Algorithm 4.11. In other cases, the context variables are available as in-
stance variables in corresponding utility or service classes. For example, the method
EncryptionParameters::getEncryptionParameters obtains the context variable λ from
an instance variable lambda of type SecurityLevelInternal, which itself stores the num-
ber of security bits. Sometimes, context variables are derived from the actual parameters.
The method FactorizeService::factorize, for example, derives the group parameters
from the first argument x of type GqElement, which itself holds a reference to an instance
of GqGroup providing the values p, q, and g. Finally, there are cases in which context vari-
ables (mainly the lists used during the voting phase) are indirectly accessed using a service
during the algorithm. For example, PartialDecryptPCCAlgorithm::partialDecryptPCC

38

uses an instance of the service class VerificationCardStateService to perform the op-
erations related to the list LdecPCC,j .

The point of mentioning the above examples is to demonstrate that a clear design pattern
for implementing the context is completely missing in both the specification and the code.
To improve the overall documentation and code quality, we recommend redesigning and
implementing this entire topic from scratch.

3.1.3. Election Result

At the very end of the whole election process, by calling ProcessPlaintexts, the tally con-
trol component computes the election result by factorizing the decrypted votes. There-
fore, the result of this algorithm is a list of all selected encoded voting options Lvotes “

pp̂0, . . . , p̂NC´1q containing the factorizations p̂i “ pp̂i,1, . . . , p̂i,ψ´1q, p̂ij P Gq XP, for each
of the NC submitted and confirmed votes. Without giving more explanations, Lvotes is im-
plicitly defined as the election result. The problem is that Lvotes alone has no semantics,
i.e., it does actually not define the election result, only its encoding as prime numbers.
What is missing is the so-called pTable, which is defined in [SysSpec, Section 3.4.2] as
the combination of the context variables ṽ (actual voting options) and p̃ (encoded voting
options). Note that the elements vi P ṽ are strings describing or identifying the voting
options. Something else that is entirely missing in the election result are the decrypted
write-ins (ProcessPlaintexts ignored them).

The general problem here is that a clear definition of the election result is missing in the
current specification document. This is very unfortunate, because the election result is
clearly the main outcome of executing the protocol. The current situation, in which the
election result implicitly consists of two objects, a list Lvotes and a map pTable betweeen
two vectors ṽ and p̃, is not very satisfactory, because it contains irrelevant information
(the internal vote encoding as prime numbers), requires additional computational steps
(applying pTable to Lvotes), and completely ignores important information from the
submitted ballots (the decrypted write-in options).

From the perspective of the verifier, it is very important to verify not only the correctness
of the decrypted votes in Lvotes, but also the authenticity of pTable, which originates from
the setup component. Therefore, verifying an election must always involve checking the
setup component’s signature, because otherwise the election result could be arbitrarily
modified using a corrupt pTable. This is clearly a very critical point, but it could be
entirely avoided using a more sophisticated definition of the election result. [updated in
October release]

Probably the simplest solution would be to define a unique enumeration of the vot-
ing options, for example based on the lexicographical ordering of their identifiers from
the official eCH document specifying the election. Since p̃ is obtained from GetSmall-
PrimeGroupMembers in a deterministic manner for a given group Gq, it would then be
possible to define the vote encoding without explicitly introducing the pTable map. The

39

election result could thus be defined independently of pTable, simply by mapping the
prime numbers back to the unique enumeration of the voting options. This would then
be the last step of the ProcessPlaintexts algorithm. We recommend implementing this so-
lution to eliminate current obstacles and to improve the clarity of the protocol’s ultimate
outcome.

3.1.4. Voting Server and Authentication

The voting server is an untrusted party, which mainly serves as a communication hub
between the other protocol parties. There are two exceptions during the voting phase,
where the voting server first executes ExtractCRC in [SysSpec, Figure 8] and then Ex-
tractVCC in [SysSpec, Figure 9]. This corresponds to the definition of the voting server’s
role as defined in the specification document:

“The voting server relays messages to the control components and extracts the
short return codes.” [SysSpec, Section 2.3]

Since the voting server is untrusted, there is no guarantee for the voting client (and
the voter) that the return codes CCid and VCCid have been computed correctly. Al-
ternatively, the protocol could let the voting client execute ExtractCRC and ExtractVCC
directly on the inputs of the control components. This would reduce the voting server’s
role into a pure communication hub with no additional responsibilities. For making the
presentation of the protocol more compact, the voting server could be removed com-
pletely from the discussion and the protocol diagrams in [SysSpec], which as a side-effect
would further emphasize the logical information flow of the protocol. We believe that
this tiny change in the voting server’s role would greatly simplify the overall presentation
of the protocol.

Another problem related to the voting server’ role is the authentication of the messages
sent to the voting server or received from it. Here are a few quotes from the specification
document, which state that authentication is important in both directions, but without
further specifying its implementation:

“The voters authenticate to the voting server” [SysSpec, Section 2.1]

“We omit the voter’s authentication to the voting server to retrieve the Verifi-
cation Card Keystore [. . .] and we assume that the voting client authenticates
to the voting server prior to the SendVote phase.” [SysSpec, Section 5.1]

“However, the elements exchanged between the control components and the
voting server should still be authenticated [. . .].” [SysSpec, Section 7]

40

From the summaries of the signed messages in [SysSpec, Table 15 and 16], we conclude
that the voting server issues signatures for its outgoing messages, and this implies that
it must possess a signature key pair and a certificate known to the control components.
However, the voting server’s keys and certificate are not further specified.

From a protocol design perspective, we do not see an obvious reason for imposing the
voting server to sign its outgoing messages. For example, it is not important for the voting
client whether a message from a control component has passed over the voting server
or not, as long as it is clear that the massage originates from the control component.
Eliminating the voting server from the protocol, as suggested above, would make the
sender and receiver of all authenticated channels more visible. Given that the voting
server is untrusted, the value of an issued signature is questionable anyway.

3.1.5. Minor Problems

We conclude this subsection of general problems encountered during our thorough anal-
ysis of the specification and the code by a list of independent minor issues.

• The assumptions described in [CryptPrim, Section 6.2] about importing the cer-
tificates are not at the right place. They should be moved to [SysSpec].

• We recommend removing the index j from algorithm names like in MixDecOnlinej,
because an algorithm exists independently of its caller.

• The pseudocode uses the symbols J and K for the truth values true and false,
respectively. However, sometimes the statement return K means to abort the al-
gorithm in an exceptional case, for example in Line 12 of GetSmallPrimeGroupMem-
bers. These cases are usually implemented by throwing an exceptions, sometimes
using methods such as Preconditions::checkState from the Google’s Guava li-
brary. From the point of view of the pseudocode algorithms, it is confusing to use
the same symbols for very different purposes.

• The convention to “display [. . .] vectors in boldface” is introduced in [SysSpec,
Section 1.4], but it is violated in many places in [CryptPrim, arg1], for example
in GetCiphertextVectorExponentiation, GetShuffleArgument, VerifyShuffleArgument,
and corresponding sub-algorithms.

• Proper doc documentation is missing at many places (mvn javadoc:javadoc out-
puts many warnings).

3.2. Cryptographic Primitives

The crypto-primitives component, which consists of a total of 92 well-specified pseudocode
algorithms, is responsible for all cryptographic computations during a protocol run. As
such, this component is clearly the centerpiece of the whole system and most critical for

41

the system’s security. Carefully analyzing this component has therefore been a key task
in our evaluation, and we have given it a lot of attention.

With a few exceptions, the algorithms of this component can easily be located in the code
using their names as a search term over the project files. Most algorithms are specified
in a Java interface and implemented in a service class implementing the interface. For
example, RecursiveHash (Algorithm 4.8) is specified as a method recursiveHash in an
interface called Hash and implemented in a class called HashService. This pattern is
applied throughout the whole code base of the crypto-primitives component. The con-
sequence of this design pattern is the fact that the component’s algorithms are spread
across a large number of files in many different packages, which possibly makes keeping
an overview harder than necessary.

3.2.1. General Problems

In our analysis of the algorithms and their implementations, we made some general
observations that we would like to discuss first. Each of the issues raised in the following
list could be a useful pointer to a potential improvement of either the specification or
the code. The same holds for the large number of specific issues raised in the following
subsections. Generally, we recommend performing an additional round of carefully fixing
all the encountered problems of this component for further improving its quality. Like in
any cryptographic implementation, achieving the highest possible level of clean coding
and documentation should be a key objective for this centerpiece component.

Stream Programming
Stream programming is undoubtedly a great enhancement of Java since its intro-
duction in Java 8. It can be used to replace traditional loops by a more compact,
concise, and powerful pipeline notation. From this point of view, we understand that
stream programming has been used all over the code base of the crypto-primitives
component. However, given the fact that all pseudocode algorithms are specified us-
ing traditional for- and while-loops, this may create a problem for people evaluating
the code that are not familiar with stream programming. To illustrate the problem
with an example, we show below the loop in Lines 4–6 of the algorithm GenDecryp-
tionProof together with the corresponding Java stream programming code:

42

As the above example demonstrates, stream programming may not always be
the best choice for creating easily readable code. To further improve the matching
between pseudocode and Java algorithms, we recommend implementing all pseu-
docode loops in a one-to-one manner by traditional Java loops, and to use stream
programming wherever it is useful in helper methods and utility classes, or to invoke
parallel computations. Note that we already recommended to use stream program-
ming more defensively in our report from last year [HKLD22c, Section 2.2.1]. We
also want to remind the developers of their own statement about using streams from
the architecture document:

“However, we use for-loops when it leads to a better alignment with the
pseudo-code algorithms and when the computational advantage is negligi-
ble.” [ArchDoc, Section 9.2]

Limiting Cases
We have encountered many examples in which limiting cases are explicitly excluded,
for example by N ą 0 (at least one ciphertext), N ě 2 (at least two ciphertexts to
shuffle), ℓ ą 0 (at least one multi-recipient ElGamal message or ciphertext), ν P N`

(at least one commitment key), n P N` (at least one random integer to generate),
n P N` (a non-empty byte array), l P N` (at least one padding character), k P N` (a
non-empty string), ℓ P N` (length of random string), l P N` (desired code length),
etc. Although there are also a few counter-examples, it seems that the exclusion of
limiting cases is an algorithmic design decision.

In most of these cases, however, the algorithm would also work in exactly the
same manner by allowing limiting cases as inputs (they would then for instance
simply return an empty list). Therefore, we see this design decision as a violation
of the generality principle in software engineering, according to which components
should work as generally as possible for making them maximally robust and reusable.
An example of a problem that arises from this violation is the shuffling of ciphertexts,
which is restricted to an input list of size N ě 2. In its application in the protocol, a
supplementary preparation step within GetMixnetInitialCiphertexts is necessary only
for dealing with this restriction (see Subsection 3.2.7 for further explanations). To
avoid such problems, we recommend seeing the inclusion of limiting cases as an
algorithmic design principle and to apply it wherever possible.

Parameters of Sub-Algorithms
In the current implementation of the specified algorithms, testing the domains of the
input parameters is systematically applied across the whole crypto-primitives com-
ponent (exceptional cases in which this is not perfectly the case are mentioned in
the summaries given below). Since the code for performing these tests is sometimes
longer and more complex than the code implementing the algorithm itself, it can be
seen as a distracting factor that makes the code inspection more difficult. Neverthe-
less, it is clear that performing these tests is a matter of great importance for the
robustness of the whole system.

To improve this situation, we recommend removing these checks from all algo-

43

rithms that are only called as sub-algorithms within the crypto-primitives component.
In this way, the responsibility of checking the domains of the parameters is dele-
gated to the top-level algorithms, which are directly called by the protocol parties.
In software engineering terms, this would correspond to implementing all top-level
algorithms using defensive programming (all preconditions are strictly tested) and
all sub-algorithms according to the design by contract principle (no preconditions
are tested). As a consequence, implementations of sub-algorithms must then be re-
garded as something that should remain invisible to the outside world, for example
by declaring corresponding Java methods as private or by excluding the packages
of corresponding classes from the module-info.java file.

The potential for simplifications by this simple measure is considerably large. As
an example, consider the implementation of the Bayer-Groth mix-net, which consists
of two top-level algorithms GenVerifiableShuffle (Algorithm 8.1) and VerifyShuffle
(Algorithm 8.2), and 24 strict sub-algorithms (Algorithm 8.3–8.26), some of them
with a long and complex list of input parameters. Removing the code for testing
the same parameters repeatedly in all these sub-algorithms would greatly improve
the slimness of the mix-net implementation without any negative consequences.

Implemention of Mathematical Groups
The crypto-primitives component contains a package called cryptoprimitives.math,
which provides various interfaces and classes for dealing with the mathematical
groups Gq and Zq and their elements. Since elements of these groups are used
almost everywhere in the protocol, this package is quite fundamental. The following
UML class diagram shows the available interfaces and classes and their relationships.

MultiplicativeGroupElement

GqElement PrimeGqElement

GroupElement

<<interface>>
GroupVectorElement

ZqElement

GroupVector GroupMatrix

<<interface>>
MathematicalGroup

GqGroup ZqGroup

Generally, we believe that this OOP model is not yet an optimal abstraction of this
fundamental subject. Here is a list of points that could be improved:

• The names of some classes and interfaces are misleading. GroupVectorElement,
for instance, combines the terms of three different concepts (group, element,
vector) in one. The name is therefore anything but self-explanatory. Other
problematical names are GroupVector and GroupMatrix, which represent vec-

44

tors and matrices of elements, respectively, not vectors and matrices of groups.

• The class structure contains some asymmetries, for example GqElement in-
heriting from MultiplicativeGroupElement, but ZqElement not inheriting
from AdditiveGroupElement. Another example is GroupVector implement-
ing the interface GroupVectorElement, but GroupMatrix not implementing
GroupVectorElement.

• Since Gq X P is a subset of Gq, it follows that every element of Gq X P is
also an element Gq. Consequently, instances of PrimeGqElement should also
be instances of GqElement, but with PrimeGqElement inheriting directly from
MultiplicativeGroupElement, this is not the case. This is therefore a violation
of the OOP specialization principle.

• Some of the interfaces do not or only partially provide the methods that one
would expect. MathematicalGroup, for example, provides methods for obtain-
ing the group size or the identity element, but not for computing the inverse
or the group operation.

This particular code area with all the problems listed above is exemplary for other
code areas, in which the current OOP design is not yet fully satisfactory. We rec-
ommend applying the highest possible degree of carefulness to further improve the
quality of the OOP modeling and coding in such important areas.

Implementation of Tuples, Vectors, and Matrices
The mathematical description of the cryptographic protocol and the pseudocode
algorithms heavily depend on tuples, vectors, and matrices. These concepts are
fundamental for grouping related objects such as numbers, strings or byte arrays
into composed objects, or even for doing so recursively to obtain arbitrary trees of
such objects. Given their importance in all areas of the specification and the code,
it is somewhat surprising that the crypto-primitives component does not provide a
sufficiently general abstraction for dealing with such composed objects in the most
convenient possible way.

The existing classes GroupVector and GroupMatrix are clearly insufficient as
a general toolbox, because their application is restricted to vectors and matrices
with values taken from Gq. Given the lack of a more general toolbox for tuples,
vectors, and matrices, we observe that they are often implemented with ordinary
lists, i.e., using instances of classes implementing the generic Java interface List.
Conceptually, this is clearly not the right instrument, because ordinary lists are
mutable by definition, while vectors are immutable (see next topic). In the light of
this remark, inheriting GroupVector from ForwardingList is clearly a conceptual
mistake, because a vector is not a specialization of a list.

For greatly improving the code all across the entire code base, we highly rec-
ommend to equip the crypto-primitives component with generic implementations of
tuples (pairs, triples, etc.), vectors, and matrices, and to strictly apply them in
every possible situation. As an example of such an implementation, we refer to

45

corresponding classes in the OpenCHVote implementation.6

Interface Hashable
The implementation of the interface Hashable and its sub-interfaces HashableString,
HashableInteger, HashableByteArray, and HashableList is another example of
sub-optimal OOP modeling. The primary purpose of these interfaces is to re-
strict the possible input parameters of RecursiveHash to objects that can actually
be hashed. Since hashing ultimately requires the input to be encoded as a byte
array, one would expect from the interface Hashable to define a method byte[]
toByteArray(), but this is unfortunately not the case (it only defines a method
Object toHashableForm(), which essentially implements the unwrapping function
from an instance of Hashable back to the original object). This implies that Re-
cursiveHash needs to make its own distinction of cases using the instanceof op-
erator, which is not very elegant. Therefore, Hashable currently makes the code
unnecessarily complicated, because it implies a large number of wrapping opera-
tions in many places of the code (53 times HashableBigInteger.from, 22 times
HashableString.from, 10 times HashableList.from), without generating a clear
benefit. This could be avoided by either completely abandoning this idea or imple-
menting it more carefully.

Immutability
Minimizing mutability is an important design principle for building robust, easy-to-
test, and thread-safe software components [Blo18, Item 17]. The developers have
applied this principle at many places of the crypto-primitives component (comments
like “Instances of this class are immutable” appear in approximately 45 different
classes). However, immutability is not always reached as claimed. Objects of the
class HashableByteArray, for example, are mutable, as the following code example
demonstrates (executing this code first outputs [1, 2, 3] and then [-1, 2, 3]):

Interestingly, the mutability of HashableByteArray is exploited twice for wiping
the content of a given password, first in SetupTallyEBAlgorithm::setupTallyEB
(Line 135) and second in MixDecOfflineAlgorithm::mixDecOffline (Line 156).
In the light of theses examples, it seems as if the mutability has been allowed on
purpose for hashable byte arrays. Two other classes that are wrongly declared as im-
mutable are VerificationFailure and VerificationSuccess. Other examples of
insufficient implementation of immutability can be found in the e-voting component

6See module utilities at https://gitlab.com/openchvote/cryptographic-protocol.

46

https://gitlab.com/openchvote/cryptographic-protocol/-/tree/master/utilities

(see Subsection 3.3).
With respect to dealing with byte arrays, it would have been much better to

implement a regular class ByteArray, which is truly immutable, instead of writing
a utility class ByteArrays for dealing with byte arrays of type byte[], which are by
definition not immutable. The same holds for tuples, vectors, and matrices (see dis-
cussion above), which also could have been implemented by truly immutable classes.
In this way, the widespread application of the methods List::of, List::copyOf,
and Stream::toList only to obtain unmodifiable lists could be dramatically reduced
and simplified. Generally, the principle of defensive copying should be applied to
the constructors of immutable classes, not to arrays or instances of mutable classes.

Package Structure
The package structure of the crypto-primitives component consists of 9 sub-packages
with names such as elgamal, hashing, math, etc., plus an additional sub-package
internal, which itself contains the same 9 sub-packages elgamal, hashing, math,
etc. To the best of our understanding, this structure has been defined to allow the
hiding of some classes in the module-info.java file. Nevertheless, we found it very
confusing, because it often meant to find closely related interfaces and classes in two
very different locations.

Another problem in the component’s package structure is the name of the pack-
age internal.securitylevel, which contains implementations of cryptographic al-
gorithm such as AES, SHA3, or SHAKE. The package name is therefore very con-
fusing. Furthermore, the utility class VectorUtils is clearly in the wrong package,
because it only deals with objects of type GqElement, GqGroup, or GroupVector,
which are all located in the package math. These are just a few examples of minor
problems, but the general point here is that the current organization of the packages
is not optimal in every aspect.

3.2.2. Basic Data Types

A first fundamental category of algorithms deals with primitive data types such as strings,
integers, and byte arrays and the conversion between them. Corresponding encoding
and decoding algorithms are specified by referring to RFC4648 and RFC3629. Since
implementations of these standards are widely available in most programming languages,
this is undoubtedly a reasonable choice.

What is regrettable, however, is the fact that the specification includes wrapper algo-
rithms for these standards (e.g., Base16Encode and Base16Decode), but in the imple-
mentation, corresponding wrapper methods are missing. Instead, methods from existing
libraries com.google.common.io.BaseEncoding and java.util.Base64.Encoder are di-
rectly called at various locations in the code. Hence, when changes need to be imple-
mented in future versions, it might be necessary to modify the code at each of these
locations.

47

Our general recommendation therefore is to provide such wrapper methods and use them
consistently throughout the code, as it is done in the pseudocode algorithms. This would
also further expose the alignment between code and specification. [updated in November
release]

Algorithm 3.1: CutToBitLength

Called by: –

Subalgorithm of: GenRandomInteger, RecursiveHashOfLength, KDFToZq

General comments: We recommend specifying the first parameter as B P B˚ with N “ |B|

instead of B P BN . Otherwise, it seems as if N is a fixed value defined in the
context. Furthermore, there is no obvious reasons for excluding the limiting
case N “ n “ 0.

Code comments: none

Algorithm 3.2: Base16Encode

Called by: –

Subalgorithm of: GenRandomBase16String

General comments: Refers to RFC4648.

Code comments: This algorithm is not implemented explicitly. The external encoder from
the class com.google.common.io.BaseEncoding is used instead at each call.
[updated in November release]

Algorithm 3.3: Base16Decode

Called by: –

Subalgorithm of: –

General comments: Refers to RFC4648. Since this algorithm is never used, we recommend re-
moving it from the specification.

Code comments: This algorithm is not implemented explicitly. [updated in November release]

Algorithm 3.4: Base32Encode

Called by: –

Subalgorithm of: GenRandomBase32String

General comments: Refers to RFC4648.

Code comments: This algorithm is not implemented explicitly. The external encoder from
the class com.google.common.io.BaseEncoding is used instead at each call.
[updated in November release]

Algorithm 3.5: Base32Decode

Called by: –

48

Subalgorithm of: –

General comments: Refers to RFC4648. Since this algorithm is never used, we recommend re-
moving it from the specification.

Code comments: This algorithm is not implemented explicitly. [updated in November release]

Algorithm 3.6: Base64Encode

Called by: –

Subalgorithm of: GenRandomBase64String, GenVerDat, CombineEncLongCodeShares,
GenCMTable, GenCredDat, GetKey, CreateLCCShare, ExtractCRC, Cre-
ateLVCCShare, VerifyLVCCHash, ExtractVCC

General comments: Refers to RFC4648.

Code comments: This algorithm is not implemented explicitly. The standard encoder from
the class java.util.Base64.Encoder is used instead at each call. [updated
in November release]

Algorithm 3.7: Base64Decode

Called by: –

Subalgorithm of: ExtractCRC, ExtractVCC

General comments: Uses the Base64 alphabet, but the missing reference to RFC4648 should be
added.

Code comments: This algorithm is not implemented explicitly. The standard decoder from
the class java.util.Base64.Decoder is used instead at each call. [updated
in November release]

Algorithm 3.8: ByteArrayToInteger

Called by: –

Subalgorithm of: GenRandomInteger, RecursiveHashToZq, KDFToZq, GetEncryptionParame-
ters, GetShuffleArgument, VerifyShuffleArgument, GetMultiExponentiationAr-
gument, VerifyMultiExponentiationArgument, GetHadamardArgument, Ver-
ifyHadamardArgument, GetZeroArgument, VerifyZeroArgument, GetSingle-
ValueProductArgument, VerifySingleValueProductArgument, GenSchnorrProof,
VerifySchnorr, GenDecryptionProof, VerifyDecryption, GenExponentiation-
Proof, VerifyExponentiation, GenPlaintextEqualityProof, VerifyPlaintextEqual-
ity, GetKey

General comments: We recommend specifying the parameter as B P B˚ with n “ |B| instead of
B P Bn. Otherwise, it seems as if n is a fixed value defined in the context.

Code comments: The method ConversionsInternal::byteArrayToInteger uses the conver-
sion method from the BigInteger class. It is therefore not a one-to-one
implementation of the pseudocode and its correctness is not obvious.

49

Algorithm 3.9: IntegerToByteArray

Called by: –

Subalgorithm of: RecursiveHash, RecursiveHashOfLength, GetEncryptionParameters, GenEnc-
LongCodeShares, GenCredDat, CreateLCCShare, CreateLVCCShare

General comments: There is no obvious reason for representing 0 as <0x00> instead of <> (empty
byte array). This makes Algorithm 3.9 unnecessarily complicated (Line 2)
without creating a clear benefit.

Code comments: The method ConversionsInternal::integerToByteArray uses the conver-
sion method from the BigInteger class. It is therefore not a one-to-one
implementation of the pseudocode and its correctness is not obvious.

Algorithm 3.10: ByteLength

Called by: –

Subalgorithm of: IntegerToByteArray, GenRandomInteger, KDFToZq

General comments: It’s confusing to use n for the given integer and b for its length. In previous
algorithms, integers were denoted by x and byte lengths by n. We recommend
renaming the variables accordingly. [updated in November release]

Code comments: An actual implementation of this algorithm is missing. [updated in November
release] In the methods ConversionsInternal::integerToByteArray and
RandomService::genRandomInteger, most of the computation is delegated to
the BigInteger class, and in KDFService::KDFToZq, the byte length is com-
puted locally. In all three cases, this is not a one-to-one implementation of the
pseudocode. [updated in November release: only for KDFService::KDFToZq]

Algorithm 3.11: StringToByteArray

Called by: –

Subalgorithm of: RecursiveHash, RecursiveHashOfLength, KDF, GenCiphertextSymmetric, Get-
PlaintextSymmetric, GetEncryptionParameters, GenCMTable

General comments: Refers to UTF-8 as defined in RFC3629.

Code comments: Uses the standard Java class java.nio.charset.StandardCharsets.

Algorithm 3.12: ByteArrayToString

Called by: –

Subalgorithm of: ExtractCRC, ExtractVCC

50

General comments: Refers to UTF-8 as defined in RFC3629. We recommend specifying the
parameter as B P B˚ with n “ |B| instead of B P Bn. Otherwise, it seems
as if n is a fixed value defined in the context. Furthermore, the restriction
n P N` (instead of n P N) seems to be an unintended mistake, because it
excludes decoding an empty byte array correctly into an empty string.

Code comments: Uses the standard Java classes java.nio.charset.CharsetDecoder and
java.nio.charset.StandardCharsets. It includes a test for n P N`.

Algorithm 3.13: StringToInteger

Called by: –

Subalgorithm of: GenVerDat, CreateConfirmMessage

General comments: The subalgorithm Decimal is not specified and no reference is given.

Code comments: Implements Decimal using the constructor from the BigInteger class. The
check in Line 2 only covers the first character of the given string. The remain-
ing characters are checked by catching the potential exception thrown by the
constructor. This is obviously correct, but it is not a one-to-one implementa-
tion of the pseudocode. [updated in November release: in the newly introduced
regular expression DECIMAL_PATTERN, the end-of-line symbol $ is missing to en-
able the removal of the try-catch clause]

Algorithm 3.14: IntegerToString

Called by: –

Subalgorithm of: GenUniqueDecimalStrings, VerifyEncryptedPCCExponentiationProofsVerifica-
tionCardSet, VerifyEncryptedCKExponentiationProofsVerificationCardSet

General comments: The subalgorithm Decimal´1 is not specified and no reference is given.

Code comments: Uses the toString method from the BigInteger class. This is obviously
correct, but it should be better commented.

Algorithm 3.15: LeftPad

Called by: –

Subalgorithm of: GenUniqueDecimalStrings

General comments: We recommend specifying the first parameter as S P A˚
UCS with k “ |S|

instead of S P Ak
UCS . Otherwise, it seems as if k is a fixed value defined

in the context. Furthermore, there is no obvious reasons for excluding the
limiting cases k “ 0 and k “ l “ 0. Finally, the requirement k ă“ l should
be properly typeset as k ď l and the vector p “ pc, . . . , cq should be defined
as a string P “ xc, . . . , cy. Currently, using p instead of p in the second code
line is obviously incorrect. [updated in December release]

51

Code comments: The implemented method RandomService::leftPad is defined as
package-private, which means that it cannot be called outside of
cryptoprimitives.internal.math. On the other hand, an equivalent
method StringUtils::leftPad from org.apache.commons.lang3 is called
twice in the modules secure-data-manager and commons, respectively.
We recommend defining RandomService::leftPad as public and using it
exclusively.

3.2.3. Basic Algorithms

A second category of fundamental algorithms deals with generating random integers and
strings, hashing of structured mathematical objects, deriving keys, and primality test-
ing. The most striking observation here is the absence of code implementing the enhanced
Baillie-PSW (EBPSW) primality test from Algorithm 4.15 and its sub-algorithms 4.15
to 4.21. Alternatively, BigInteger::isProbablePrime is called at different locations,
which only implements the regular BPSW test according to ANSI X9.80. Although
EBPSW strengthens BPSW at almost no additional computational cost, we don’t see
the benefit of including detailed pseudocode algorithms for something that is not even
implemented in the given code base. Moreover, since probabilistic primality tests are
only required in GetEncryptionParameters for finding suitable group parameters in a de-
terministic, verifiable manner, there is no need for implementing the most advanced
algorithm for detecting pseudoprimes generated under adversarial control. We therefore
recommend removing these algorithms from the specification (a short discussion of the
topic seems sufficient).

Algorithm 4.0: RandomBytes

Called by: –

Subalgorithm of: GenRandomInteger, GenRandomBase16String, GenRandomBase32String, Gen-
RandomBase64String, GenCiphertextSymmetric,

General comments: Despite its critical role for the security of the protocol, this ultimately funda-
mental algorithm is not further specified (it has not even a proper algorithm
number). The given statement that standard implementations for generat-
ing cryptographically secure randomness are available in most programming
languages is certainly true, but given the delicacy of this topic, we would at
least expect some recommendations about selecting an appropriate PRNG
in practice. Clearly, the responsibility for this selection cannot be left to the
software development team, nor should it be simply delegated to a program-
ming language SDK at runtime.

52

Code comments: The implementation in RandomService::randomBytes delegates the random-
ness generation to the standard Java class java.security.SecureRandom us-
ing its default constructor. In this way, the selection of the actual PRNG is
determined at runtime by the operating system and thus remains undefined.

Algorithm 4.1: GenRandomInteger

Called by: –

Subalgorithm of: GenRandomVector, GenUniqueDecimalStrings, PassesMillerRabin, GenKeyPair,
GenShuffle, GenShuffle, GetMultiExponentiationArgument, GetProductArgu-
ment, GetZeroArgument, GetSingleValueProductArgument, GenSchnorrProof,
GenExponentiationProof, GenKeysCCR, GenVerDat, CreateVote

General comments: For improved readability, we recommend replacing the Goto statement in
Line 6 by either a while or a do-while loop. [updated in November release]

Code comments: By delegating the generation of random integers to the constructor of the
BigInteger class, the code is very different from the pseudocode. The Goto
statement is implemented using a do-while loop.

Algorithm 4.2: GenRandomVector

Called by: –

Subalgorithm of: GetShuffleArgument, GetMultiExponentiationArgument, GetHadamardArgu-
ment, GetZeroArgument, GetSingleValueProductArgument, GenDecryption-
Proof, GenPlaintextEqualityProof

General comments: There is no obvious reason for excluding the limiting case n “ 0.

Code comments: Implemented using stream programming.

Algorithm 4.3: GenRandomBase16String

Called by: –

Subalgorithm of: GenVerDat

General comments: There is no obvious reason for excluding the limiting case ℓ “ 0. Furthermore,
by calling three sub-algorithms, the algorithm is unnecessarily complicated.
It would be much simpler to have a main loop over i P r0, ℓq, to pick at each
iteration a random index from j P r0, 16q, and to select the j-th character
from ABase16. The sequence of these characters is the random Base16 string.

Code comments: Uses the external encoder from the com.google.common.io.BaseEncoding

class. This is obviously correct, but it is not aligned with the pseudocode.
To avoid code duplication, we recommend implementing the algorithms
Base16Encode and Truncate and call them here. [updated in November re-
lease]

Algorithm 4.4: GenRandomBase32String

53

Called by: –

Subalgorithm of: GenVerDat

General comments: Same remarks as for GenRandomBase16String.

Code comments: Uses the external encoder from the com.google.common.io.BaseEncoding

class. This is obviously correct, but it is not aligned with the pseudocode.
To avoid code duplication, we recommend implementing the algorithms
Base32Encode and Truncate and call them here. [updated in November re-
lease]

Algorithm 4.5: GenRandomBase64String

Called by: –

Subalgorithm of: –

General comments: Same remarks as for GenRandomBase16String. Furthermore, since this algo-
rithm is never used, we recommend removing it from the specification and
the code base.

Code comments: Uses the standard encoder from the java.util.Base64 class. This is obvi-
ously correct, but it is not aligned with the pseudocode. [updated in November
release] Since the algorithm is never used, the method is only called in test
files.

Algorithm 4.6: Truncate

Called by: –

Subalgorithm of: GenRandomBase16String, GenRandomBase32String, GenRandomBase64String

General comments: We recommend specifying the first parameter as S P A˚
x with u “ |S| in-

stead of S P Au
x. Otherwise, it seems as if u is a fixed value defined in the

context. Furthermore, there is no obvious reason for excluding the limiting
cases ℓ “ 0 and u “ ℓ “ 0. Finally, the output value S1 should be specified
as S1

“ xS1
0, . . . , S

1
ℓ´1y. Note that by simplifying Algorithms 4.3 to 4.5 as

explained above, Truncate is no longer needed and can be removed from the
specification.

Code comments: This algorithm is not implemented explicitly. The standard method
String::substring is used instead at each call. [updated in November re-
lease]

Algorithm 4.7: GenUniqueDecimalStrings

Called by: –

Subalgorithm of: GenVerDat, GenCMTable

54

General comments: For the assignment of c, the proper assignment symbol Ð should be used.
There is no obvious reason for excluding the limiting cases n “ 0 and l “

n “ 0. Here again, the generation of the random string within the main while
loop could be simplified by selecting l random digits instead of generating
a random integer and representing it as a string with leading zeros. The
algorithm LeftPad is then no longer needed.

Code comments: none

Algorithm 4.8: RecursiveHash

Called by: –

Subalgorithm of: GenSignature, VerifySignature, GetVerifiableCommitmentKey, GetShuffleArgu-
ment, VerifyShuffleArgument, GetMultiExponentiationArgument, VerifyMulti-
ExponentiationArgument, GetHadamardArgument, VerifyHadamardArgument,
GetZeroArgument, VerifyZeroArgument, GetSingleValueProductArgument, Ver-
ifySingleValueProductArgument, GenSchnorrProof, VerifySchnorr, GenDecryp-
tionProof, VerifyDecryption, GenExponentiationProof, VerifyExponentiation,
GenPlaintextEqualityProof, VerifyPlaintextEquality, GenVerDat, CombineEnc-
LongCodeShares, GenCMTable, GenCredDat, GetKey, CreateLCCShare, Ex-
tractCRC, CreateLVCCShare, VerifyLVCCHash, ExtractVCC

General comments: L is defined in the context as a positive natural number, so the requirement
L ą 0 is ambiguous. In Line 10, the correct test is w P A˚

UCS . There
is no obvious reason for excluding the hashing of empty vectors in Line 12.
Therefore, we recommend considering vectors pw0, . . . , wj´1q of length j ě 0.
[updated in October release] The way vectors of length 1 (case j “ 0 in Line 13)
are handled as a special case creates trivial collisions between single values
and vectors consisting of single values. We recommend removing Lines 13
and 14. Furthermore, we recommend adding an additional prefix byte (for
example <0x03>) to the vector case to avoid trivial collisions between vectors
and corresponding byte arrays obtained from applying RecursiveHash. Given
the possibility of constructing such trivial collisions, the current algorithm
is clearly not collision-resistant across the full input domain.7 [updated in
October release]

Code comments: The code includes a prefix byte ARRAY_PREFIX for the vector case and the
singleton case is not treated as a special case. Here, it seems that the speci-
fication is not up-to-date. [updated in October release]

Algorithm 4.9: RecursiveHashToZq

Called by: –

Subalgorithm of: HashAndSquare, GetVerifiableCommitmentKey, SetupTallyEB, MixDecOffline

55

General comments: There is no obvious reason for the second requirement |q| ě 512. In Line 3,
applying the concatenation symbol in h||v to an integer and a vector is a
slightly abusive notation.

Code comments: The code for prepending a single value to a list using stream programming is
correct, but unnecessarily complicated. The problem here is the absence of
proper data structures for dealing with mathematical objects such as vectors
or tuples.

Algorithm 4.10: RecursiveHashOfLength

Called by: –

Subalgorithm of: RecursiveHashToZq

General comments: Section number is missing in the reference given under Require. The vari-
able ℓ˚ in the second requirement is undefined. [updated in December re-
lease] It does not make sense to state u P N`

ˆ B˚
Ñ Bu. [updated

in December release: but it is still incorrect, the correct statement would be
XOF : N`

ˆ B˚
Ñ Bu] Moreover, all remarks from RecursiveHash are also

applicable here. [updated in October release]

Code comments: An external library BouncyCastle is used for SHAKE-256 including XOF.

Algorithm 4.11: HashAndSquare

Called by: –

Subalgorithm of: GenVerDat, CreateLCCShare, CreateConfirmMessage, CreateLVCCShare

General comments: The name of the algorithms is a bit misleading and inconsistent with other
algorithm name. We recommend calling it RecursiveHashToGq, similar to
RecursiveHashToZq, because it essentially defines a hash function into Gq.
Furthermore, there is no obvious reason for restricting the input to a single
integer x P N. We recommend allowing multiple inputs v0, . . . , vk´1 without
restrictions, similar to RecursiveHashToZq. Note that in RecursiveHashToZq,
the value q is defined as an input parameter, whereas in HashAndSquare, p
and q are part of the context. We recommend doing it consistently in both
cases.

Code comments: The above remark about the algorithm’s sub-optimal name becomes ob-
vious by looking at the interface Hash. The specification defines p

and q as part of the context, but the implementation has a single ad-
ditional argument group, from which p and q are derived. Calling
GqElementFactory::fromSquareRoot to compute modular squaring is cor-
rect, but not very obvious.

Algorithm 4.12: KDF

Called by: –

Subalgorithm of: KDFToZq, GenCMTable, ExtractCRC, ExtractVCC

56

General comments: Concatenating the byte array representations of the contextual information
may create unintended “collisions”. [updated in October release] The call of the
external algorithm HKDF-Expand uses the wrong font. [updated in December
release]

Code comments: By concatenating info_i_bytes.length to the byte array representations
of each contextual information, the implementation in KDFService::KDF

deviates from the pseudocode. Another deviation is the restriction
stringToByteArray(info_i).length <= 255 in Line 79, which is not
present in the pseudocode. [updated in October release] Finally, making a
copy of contextInformation is not necessary.

Algorithm 4.13: KDFToZq

Called by: –

Subalgorithm of: GenEncLongCodeShares, CreateLCCShare, CreateLVCCShare

General comments: Since Hash is not explicitly used (it is used only in the subalgorithm KDF),
no restrictions on the variable L need to be imposed here.

Code comments: The method KDFService::KDFToZq does not call ByteLength (which does
not exist), but instead ℓ is computed locally. The test l_curved >= L is
undefined in the pseudocode (since it involves L, it can simply be dropped).

Algorithm 4.14: Argon2id

Called by: –

Subalgorithm of: GenCredDat, GetKey

57

General comments: Switching from PBKDF2 to Argon2id for password based key derivation is a
logical move that follows best practice in this problem domain. In contrast
to PBKDF2 providing only one dimension to adjust the level of entropy gain,
for Argon2id the specifier needs to consider three, namely p for handling the
amount of lanes (CPUs), m for handling the amount of memory, and t for
handling the amount of iterations. The specification claims the following
values for providing “a considerable increase in cost”: p “ 1, m “ 14, t “ 2.
The reasoning behind those specific values is neither explained nor supported
by suitable material or methods better than “. . . our benchmarks”. They are
even in sharp contrast to the recent official RFC 9106, where p “ 4, m “ 21,
t “ 1 is provided as the first recommendation for any “uniform save option”.8

There are alternative recommendations for special cases, but in no case p ă 2

is recommended.9 There is even a paper indicating practical attacks on
Argon2i and derivatives if p “ 1 [AB17]. Therefore, we cannot support
the reasoning behind the selected values. We suggest to provide concrete
justification for the given setting. Besides, the generation of a random salt
is missing, and it should be returned together with t. [updated in October
release]

Code comments: Both the name and the return values of the method
Argon2Service::genArgon2id do not correspond to the pseudocode
algorithm Argon2id. The auxiliary method Argon2Service::getArgon2id

should be declared private. [updated in October release]

Algorithm 4.15: IsProbablePrime

Called by: –

Subalgorithm of: GetEncryptionParameters

General comments: The integer sp “ 8530092 and its binary representation
0b100000100010100010101100 in the comment are incorrect (the bit
at index 19 is set to 0), which implies that in Line 3 the algorithm wrongly
returns false for the prime number n “ 19. The correct value is sp “ 9054380

(0b100010100010100010101100). Furthermore, we recommend defining sk

as the product of the first k primes p1, . . . , pk (e.g. s9 “ 203693490 for the
product of all primes up to p9 “ 23) and to use gcdpn, skq “ n for detecting
them in the test. The same value sk could then be used for detecting
corresponding composite numbers larger than pk by gcdpn, skq ą 1 (as an
extension for the test in Lines 5–7). [updated in November release: algorithm
removed]

58

Code comments: The available code does not include an implementation of this algorithm.
Instead, the implementation of GetEncryptionParameters calls the standard
method BigInteger::isProbablePrime, which does not correspond to this
algorithm. Primality tests are therefore not implemented in alignment with
the specification. [updated in November release: algorithm removed]

Algorithm 4.16: PassesMillerRabin

Called by: –

Subalgorithm of: IsProbablePrime

General comments: Since the Miller-Rabin test is standard in cryptography, we do not see the
necessity of giving the algorithm in pseudocode. The necessary extension for
the Baillie-PSW test could be described in the text. [updated in November
release: the algorithms has been removed]

Code comments: The available code does not include an implementation of this algorithm.
[updated in November release: algorithm removed]

Algorithm 4.17: GetLucasSequenceValues

Called by: –

Subalgorithm of: IsProbablePrime

General comments: none

Code comments: The available code does not include an implementation of this algorithm.
[updated in November release: algorithm removed]

Algorithm 4.18: GetLucasParameters

Called by: –

Subalgorithm of: IsProbablePrime

General comments: none

Code comments: The available code does not include an implementation of this algorithm.
[updated in November release: algorithm removed]

Algorithm 4.19: LucasDoubleK

Called by: –

Subalgorithm of: GetLucasSequenceValues

General comments: The name of this algorithms is in conflict with the general algorithm naming
conventions. [updated in November release: algorithm removed]

Code comments: The available code does not include an implementation of this algorithm.
[updated in November release: algorithm removed]

Algorithm 4.20: LucasIncrementK

59

Called by: –

Subalgorithm of: GetLucasSequenceValues

General comments: The name of this algorithms is in conflict with the general algorithm naming
conventions. [updated in November release: algorithm removed]

Code comments: The available code does not include an implementation of this algorithm.
[updated in November release: algorithm removed]

Algorithm 4.21: IsPerfectSquare

Called by: –

Subalgorithm of: GetLucasParameters

General comments: none

Code comments: The available code does not include an implementation of this algorithm.
[updated in November release: algorithm removed]

3.2.4. Symmetric Authenticated Encryption

The two algorithms in this category deal with symmetric encryption. There are a few
deviations between code and specification, which we think should be addressed. What
is missing from the point of view of the definition of a symmetric encryption scheme is
a key generation algorithm, which “knows” the type and length of the keys to generate
(possibly as a function of the security parameter). Otherwise, the implementation of the
key generation is left to a programmer who may not be aware of the delicacy of this task
and the details to consider.

Algorithm 5.1: GenCiphertextSymmetric

Called by: –

Subalgorithm of: GenCMTable, GenCredDat

7Algorithm RecHash from the current version of [HKLD22a] could be considered as an example for
solving the raised issues.

8See https://datatracker.ietf.org/doc/rfc9106.
9We are aware of the current OWASP cheat sheet recommending p “ 1, m “ 15, and t “ 2 as a bare

minimum for Argon2id, but then again without reasonable justification.

60

https://datatracker.ietf.org/doc/rfc9106

General comments: Concatenating the byte array representations of the associated data may
create unintended “collisions”. [updated in October release] The wrong con-
catenation symbol is used (| instead of ||). [updated in October release] Since
p “ |P| is not a fixed variable, it would be better to define the plaintext as
an element of B˚ (despite the upper limit of p in actual implementations).
Same remark for the output ciphertext C P B˚. The call of AuthenticatedDe-
cryption uses the wrong font. [updated in December release] The encryption
key should be called secret key or symmetric key.

Code comments: By concatenating associated_i_bytes.length to the byte ar-
ray representations of each associated data, the implementation in
SymmetricAuthenticatedEncryptionService::genCiphertextSymmetric

deviates from the pseudocode. Another deviation is the restriction
stringToByteArray(associated_i).length <= 255 in Line 55, which is
not present in the pseudocode. [updated in October release] Furthermore,
making a copy of associatedData is not necessary. Finally, calling a pair
(C, nonce) a SymmetricCiphertext is somehow misleading, because C

alone is the ciphertext.

Algorithm 5.2: GetPlaintextSymmetric

Called by: –

Subalgorithm of: GetKey, ExtractCRC, ExtractVCC

General comments: Same remarks as for GenCiphertextSymmetric.

Code comments: Same remarks as for GenCiphertextSymmetric.

3.2.5. Digital Signatures

The algorithms in this category deal with signature generation and verification. The
main issue here is the question of how to handle the certificate’s expiry date. In our
comments, we argue that judging the validity of a certificate should only depend on the
dates of the given election period, not on the current timestamp. This is a conceptual
question, which should be carefully addressed somewhere in the specification document.
Such a discussion is currently missing.

Algorithm 6.1: GenKeysAndCert

Called by: –

Subalgorithm of: –

General comments: This algorithm is never called in the protocol. We recommend making cor-
responding calls more explicit. Using set operations for defining the value
assigned to the variable info is slightly abusive.

61

Code comments: The name of the helper class KeysAndCert (keys in plural) is misleading,
since it contains only a single private key.

Algorithm 6.2: GenSignature

Called by: Called by the authorities for every message sent during a protocol execution.

Subalgorithm of: –

General comments: a) While RecursiveHash is called with multiple parameters at every other in-
vocation in the protocol, GenSignature passes a pair pm, cq to RecursiveHash
instead of two values m and c. The reason for this is unclear. For consis-
tency reasons, we recommend changing it accordingly. [updated in December
release]
b) The algorithm SignpK,Mq from the RSASSA-PSS standard expects the
message M to be encoded as an octet string. Since the hash value h obtained
from calling RecursiveHash is not an encoding of the values to be signed in
the strict sense, the corresponding call SignpprivKey, hq is slightly abusive.
We recommend adding some clarifying comments to the specification.
c) Checking the validity period of the certificate against the current times-
tamp does not make much sense here (checking the certificate expiry date
must be part of the signature verification, see below).

Code comments: none

Algorithm 6.3: VerifySignature

Called by: Called by every party receiving a signed message from an authority during a
protocol execution.

Subalgorithm of: VerifyConfigPhase, VerifyTally

General comments: The above general comments a) and b) for GenSignature apply here for the
same reasons. [updated in December release: only for a)] Additionally, we
believe that the validity of the certificate should be checked against the end of
the election process (to ensure that the certificate was valid at the time of the
election), not against the current timestamp. Otherwise, if valid signatures
suddenly turn invalid when a certificate expires, the verification of an election
is no longer deterministic for a given set of election data.

Code comments: none

3.2.6. ElGamal Cryptosystem

This category of algorithms deals with the ElGamal encryption scheme. It includes some
basic algorithms for group parameters and key pair generation, encryption and decryp-
tion, and for exploiting the scheme’s homomorphic property. The implementation deals
with an optional extension called multi-recipient ElGamal, in which the same message

62

can be encrypted for different public keys using a single randomization. This extension,
however, is currently not used in the protocol (it may be used in future versions for han-
dling election with write-ins). In the current protocol version, the implementation of this
extension makes both the pseudocode and the Java code unnecessarily complicated for no
real benefit, hence we recommend replacing it by a standard ElGamal implementation.
In the current implementation, for consistency reasons, we recommend renaming the
classes ElGamal, ElGamalFactory, and ElGamalService into MultiRecipientElGamal,
MultiRecipientElGamalFactory, and MultiRecipientElGamalService, respectively (or
removing the term “MultiRecipient” from all ElGamal classes).

With respect to the current design of the ElGamal implementation, the introduction of
data classes for private and public keys, key pairs, messages, and ciphertexts is possi-
bly not the best decision. In each case, it creates an additional abstraction layer, which
makes the handling of corresponding objects more cumbersome (numerous wrapping and
unwrapping operations are required at many locations in the code), without providing
much benefit. From a theoretical point of view, a multi-recipient ElGamal message,
for example, is simply a vector of elements of Gq, and this is how they are character-
ized in the pseudocode algorithms. The motivation and benefit of introducing a class
ElGamalMultiRecipientMessage on top of the classes GqElement and GroupVector is
therefore not obvious. Generally, we believe that the potential for simplifications is quite
large in this area of the code.

Algorithm 7.1: GetEncryptionParameters

Called by: –

Subalgorithm of: VerifyEncryptionParameters

General comments: (1) This algorithm is never called in the protocol, except for verifying its
output values by the verifier. We recommend making the calls during the
configuration phase more explicit by stating when and by whom the algo-
rithm is called.
(2) On Line 5, it is confusing to first convert qb into an integer and then apply
a bit shift, i.e., we simply recommend dividing the integer by 4. Furthermore,
we recommend swaping Line 8 and Line 9 to avoid repeating the calculation
of 2q ` 1. [updated in December release: only the swaping of Lines 8 and 9]
(3) Since 3 is also a generator for every subgroup Gq, similar to 4, it is pos-
sible to replace the code from Lines 10–14 by a single if-then-else statement
(the option g “ 4 can be dropped). This follows from the fact that every safe
prime p ą 7 satisfies p ” 11 pmod 12q. Note that this condition can be used
for speeding up the generation of safe primes [Wie03]. [updated in December
release]

Code comments: The method ElGamalService::getEncryptionParameters explicitly per-
forms primality tests on p and q, thus its is not necessary to perform the
same tests again in the constructor GqGroup::new.

63

Algorithm 7.2: GetSmallPrimeGroupMembers

Called by: –

Subalgorithm of: VerifySmallPrimeGroupMembers

General comments: (1) This algorithm is never called in the protocol, except for verifying its
output values by the verifier. We recommend making the calls during the
configuration phase more explicit by stating when and by whom the algo-
rithm is called.
(2) The reasons for excluding g P t2, 3, 4u from the search and for imposing
upper limits on r remain unclear (the algorithm correctly returns K if r is
bigger than the number of available primes in Gq).

Code comments: Limiting the possible primes to integers (of type int) smaller than
Integer.MAX_VALUE is a deviation from the pseudocode. Similarly, testing
!current.equals(gqGroup.getGenerator().value), which is not even nec-
essary for g P t2, 3, 4u and current >= 5, is not included in the pseudocode.
[updated in December release]

Algorithm 7.3: IsSmallPrime

Called by: –

Subalgorithm of: GetSmallPrimeGroupMembers

General comments: Since the algorithm is a general (even though quite inefficient) solution for
testing primes of any size, we recommend calling it IsPrime (no test for “small-
ness” is included). Furthermore, we recommend improving it according to the
“Optimized School Method”, which exploits p ” ˘1 pmod 6q for all primes
p ą 3. [updated in December release]

Code comments: In the implementation, the statement return true; in Line 49 should be
within the brackets of the else-statement (between Line 46 and 47), like in
the pseudocode. [updated in December release]

Algorithm 7.4: GenKeyPair

Called by: –

Subalgorithm of: GenKeysAndCert, GenKeysCCR, GenVerDat, SetupTallyCCM

General comments: The statement that ElGamal encryption is secure for psk, pkq “ p0, 1q is
clearly wrong. In that particular case, where pk is not a generator of Gq, we
always get Encpkpm, eq “ pgr,mq. The adversary can then define a simple
algorithm to win the ciphertext indistinguishability game with probability
1 for arbitrary pairs of messages. From a theoretical point of view, it is
therefore crucial to exclude pk “ 1 from the key generation algorithm, even
if this case will almost never occur for randomly selected private keys.

64

Code comments: Using stream programming for getting the random private keys and calling
a sub-routine derivePublicKey for getting corresponding public keys, the
matching between the implementation and the pseudocode is not quite obvi-
ous. [updated in November release: method derivePublicKey still exists, but
is not used anymore]

Algorithm 7.5: GetCiphertext

Called by: –

Subalgorithm of: GetCiphertextVectorExponentiation, GenShuffle, GetMultiExponentiationArgu-
ment, VerifyMultiExponentiationArgument, GetDiagonalProducts, GenVerDat,
CreateVote, GetMixnetInitialCiphertexts

General comments: none

Code comments: Implemented using (possibly parallel) stream programming.

Algorithm 7.6: GetCiphertextExponentiation

Called by: –

Subalgorithm of: GetCiphertextVectorExponentiation, GenEncLongCodeShares, CreateVote

General comments: By assigning the newly calculated values to the same variables, for example
ϕi Ð ϕa

i mod p, it is unclear whether the algorithm mutates the original
input vector Ca or computes a new one from scratch. The limiting case
ℓ “ 0 is allowed here, but not in GetCiphertext. We recommend adding the
constraint ℓ ą 1 to the pseudocode. [updated in December release: only ℓ ą 1

has been added]

Code comments: Implemented using (possibly parallel) stream programming. We recommend
implementing the distinction between sequential and parallel processing in
the same way as in GetCiphertext or in GetCiphertextVectorExponentiation.

Algorithm 7.7: GetCiphertextVectorExponentiation

Called by: –

Subalgorithm of: GetShuffleArgument, VerifyShuffleArgument, VerifyMultiExponentiationArgu-
ment, GetDiagonalProducts

General comments: The limiting case ℓ “ 0 is allowed here, but not in GetCiphertext. We recom-
mend adding the constraint ℓ ą 1 to the pseudocode. [updated in December
release]

Code comments: Implemented using (possibly parallel) stream programming. The implemen-
tation excludes an input of size n “ 0, but the peudocode allows it. If n “ 0

is excluded, then the reduction to the identity ciphertext is not necessary.

Algorithm 7.8: GetCiphertextProduct

Called by: –

65

Subalgorithm of: GetCiphertextVectorExponentiation, GetShuffleArgument, VerifyMultiExponen-
tiationArgument, GetDiagonalProducts, CombineEncLongCodeShares

General comments: The limiting case ℓ “ 0 is allowed here, but not in GetCiphertext. We recom-
mend adding the constraint ℓ ą 1 to the pseudocode. [updated in December
release]

Code comments: Implemented using (possibly parallel) stream programming.

Algorithm 7.9: GetMessage

Called by: –

Subalgorithm of: GetPartialDecryption, CombineEncLongCodeShares, GenCMTable

General comments: none

Code comments: Implemented using (possibly parallel) stream programming.

Algorithm 7.10: GetPartialDecryption

Called by: –

Subalgorithm of: GenVerifiableDecryptions

General comments: none

Code comments: none

Algorithm 7.11: GenVerifiableDecryptions

Called by: –

Subalgorithm of: MixDecOnline, MixDecOffline

General comments: none [updated in December release: unnecessary restriction N ą 0 introduced]

Code comments: Implemented using stream programming. Instead of a single loop as in the
pseudocode, stream programming requires two independent statements. Fur-
thermore, the implementation contains a test C.isEmpty() to exclude the
special case N “ 0 for no obvious reason. This restriction is not aligned with
the pseudocode. [updated in December release: restriction N ą 0 added to
specification, instead of removing it from code]

Algorithm 7.12: VerifyDecryptions

Called by: –

Subalgorithm of: VerifyMixDecOnline, VerifyMixDecOffline, VerifyTallyControlComponentBallot-
Box

General comments: There is no obvious reason for the restriction N ą 0, which is not present
in GenVerifiableDecryptions. This means that the decryption of an empty list
of ciphertexts can not be verified. [updated in December release: restriction
N ą 0 added to GenVerifiableDecryptions] We generally recommend including
limiting cases as much as possible.

66

Code comments: Implemented using stream programming. Evaluating the conjunction us-
ing Stream::reduce and an auxiliary class Verifiable seems unneces-
sarily complicated. We recommend using the standard stream method
Stream::allMatch instead. Furthermore, the restriction N ą 0 is tested
by 1 <= N instead of N > 0. This is obviously the same, but a minor mis-
alignment with the pseudocode. Finally, the test γ ­“ γ1 is missing in the
implementation. We consider this a major deviation from the specification.
[updated in November release: test changed to N > 0 and additional test for
γ ­“ γ1 introduced]

Algorithm 7.13: CombinePublicKeys

Called by: –

Subalgorithm of: GenVerCardSetKeys, SetupTallyEB, VerifyMixDecOnline, MixDecOnline, Veri-
fyMixDecOffline

General comments: Either the domain GNˆs
q of the given matrix of public keys or the indexing in

pkj,i is wrong, since i iterates over N and j over s, not vice versa. Further-
more, the restriction N ą 1 is missing for being aligned with the restriction
N P N` in GenKeyPair. [updated in December release: the indexing problem
still exists]

Code comments: Implemented using stream programming.

3.2.7. Mix Net

The Bayer-Groth mix-net implementation is a central part of the crypto-primitives com-
ponent. It provides two top-level algorithms GenVerifiableShuffle and VerifyShuffle, i.e.,
all other algorithms in this section are sub-routines to be called as part of the shuffling
or verification procedure. Many of these sub-routines are relatively complex, but this
only reflects the general complexity of the Bayer-Groth method. We have two general
remarks.

First, there is a lack of generality with respect to the allowed input size N , which cannot
be smaller or equal to 2. Since the Bayer-Groth method uses a n ˆ m-matrix of size
N “ nm, we see that the limiting case N “ 0 may possibly be excluded inherently,
but the method should at least be capable of handling N “ n “ m “ 1 correctly.
We have not analyzed this case in detail, but it is generally a bad sign for either the
specification or the implementation, if limiting cases are not included automatically. We
highly recommend enhancing the method to include the general case N ě 0, because
otherwise these cases must always be handled separately in each application, like for
example in GetMixnetInitialCiphertexts, where two dummy ciphertexts are added to the
list of ciphertexts to achieve N ě 2 artificially (only to remove them after performing
the mixing and decryption). This is clearly a very unsatisfactory solution.

67

Second, there is no obvious justification for selecting m and n closest to
?
N , because

this only optimizes the size of the resulting proof (not the performance), and the benefit
strongly depends on the factorization of N (for example if N is prime, the proof size
can not be optimized). We have already discussed this point in [HKLD22c, Section 2.3],
but our recommendation has not been considered. Besides optimizing the performance,
which we think should be prioritized, our recommendation for n “ N and m “ 1 has
a huge potential for simplifications, because then it would be possible to eliminate the
algorithms GetProductArgument, VerifyProductArgument GetHadamardArgument, Verify-
HadamardArgument, GetZeroArgument, VerifyZeroArgument, ComputeDVector, and Get-
MatrixDimension, both in the specification document and in the code. This would make
the Bayer-Groth shuffle proof implementation much more accessible (the total number of
code line for the shuffle proof could be decreased by approximately 30% from currently
5’747 to 3’592). Given the complexity of these algorithms and their implementation, sim-
plifications of such dimensions should be taken into account, especially if their purpose
and benefit is more than questionable.

Algorithm 8.1: GenVerifiableShuffle

Called by: –

Subalgorithm of: MixDecOnline, MixDecOnline

General comments: The restriction 2 ď N seems arbitrary. Clearly, shuffling a list of size N “

0 or N “ 1 are trivial cases, but they may well appear in applications.
Excluding them limits the generality of this algorithm for no obvious benefit.
Furthermore, the second restriction N ď q ´ 3 has no practical relevance.

Code comments: Using a helper method CommitmentKeyService::canGenerateKey for check-
ing N ď q ´ 3 is unnecessarily complicated, especially since q is computed
explicitly in the following line.

Algorithm 8.2: VerifyShuffle

Called by: –

Subalgorithm of: VerifyMixDecOnline, VerifyMixDecOffline, VerifyTallyControlComponentBallot-
Box

General comments: Same remarks about the restriction 2 ď N ď q´3 as for GenVerifiableShuffle.

Code comments: Same remark as for GenVerifiableShuffle.

Algorithm 8.3: GenShuffle

Called by: –

Subalgorithm of: GenVerifiableShuffle

General comments: none

68

Code comments: Implemented using stream programming. The code line .flatMap(i ->

Stream.of(i)...) is very confusing and at the same time not necessary
(the three map operations could be merged into a single mapToObj opera-
tion, which is directly applied to the stream source IntStream.range(0,

N)). [updated in December release]

Algorithm 8.4: GenPermutation

Called by: –

Subalgorithm of: GenPermutation

General comments: The restriction N P N` is not necessary. The post-condition ZN
N´1 is in-

correct (it should be ZN
N) and unnecessary (it is satisfied automatically).

[updated in December release: only ZN
N´1 has been change to ZN

N]

Code comments: none

Algorithm 8.5: GetMatrixDimensions

Called by: –

Subalgorithm of: GenVerifiableShuffle, VerifyShuffle

General comments: The special case N “ 1 should not be excluded, since the algorithm would
simply return m “ n “ 1, which is the correct result in that particular case.

Code comments: Defining floorSquareRoot and then calling it at Line 43 does not contribute
to better code readability. [updated in December release]

Algorithm 8.6: GetVerifiableCommitmentKey

Called by: –

Subalgorithm of: GenVerifiableShuffle, VerifyShuffle

General comments: Adding gi to v should be denoted by vY tgiu. [updated in December release]
Assuming that the restriction ν ď q´ 3 is due to the constraint w R t0, 1, gu,
it should be ν ď q ´ 2, because 0 is not an element of Gq.

Code comments: none

Algorithm 8.7: GetCommitment

Called by: –

Subalgorithm of: GetCommitmentMatrix, GetCommitmentVector, GetMultiExponentiationAr-
gument, VerifyMultiExponentiationArgument, GetProductArgument, GetH-
adamardArgument, VerifyHadamardArgument, GetZeroArgument, VerifyZe-
roArgument, GetSingleValueProductArgument, VerifySingleValueProductArgu-
ment

General comments: none

69

Code comments: The code line nu = ck.size() is incorrect, it should be nu = ck.size() -

1. The code for testing the constraint l ą 0 is missing. If such a test is added
to the code, then the test a.isEmpty() in Line 73 can be dropped. [updated
in November release] A quite complicated single stream programming code
line is used to essentially compute a product of powers. We recommend intro-
ducing an additional abstraction for this particular operation (it could then
also be used to simplify GetCiphertextVectorExponentiation, which performs
essentially the same operation in a different context).

Algorithm 8.8: GetCommitmentMatrix

Called by: –

Subalgorithm of: GetCommitmentVector, GetShuffleArgument, VerifyShuffleArgument, GetMulti-
ExponentiationArgument, GetProductArgument, GetHadamardArgument, Get-
ZeroArgument

General comments: The constraint m,n ą 0 is correct to exclude an empty matrix, but since
it allows the special case m “ n “ 1, it is in conflict with the restriction
2 ď N “ nm from GenVerifiableShuffle.

Code comments: Implemented using stream programming. Like in GetCommitment, the code
line nu = ck.size() is incorrect, it should be nu = ck.size() - 1. A test
for checking the constraint m,n ą 0 is missing. [updated in November release:
comment added]

Algorithm 8.9: GetCommitmentVector

Called by: –

Subalgorithm of: GetZeroArgument

General comments: Since d is a vector and not a matrix, passing it as a p2m ` 1q ˆ 1 matrix
to GetCommitmentMatrix is slightly abusive notation. Furthermore, in its
current form, the two-lines algorithm could be reduced to a single-line algo-
rithm, which simply returns the result of calling GetCommitmentMatrix. But
this raises the question, if this algorithm is really necessary, since it does
nothing more than checking that both d and t have an odd number 2m` 1

of elements. What is missing in the pseudocode is the transformation of d
into a matrix.

Code comments: The definition of the variable d_matrix in Line 165 implements the missing
line in the pseudocode. A check for testing that the length of the input
vectors is an odd number 2m` 1 is missing. [updated in November release]

Algorithm 8.10: StarMap

Called by: –

Subalgorithm of: GetZeroArgument, VerifyZeroArgument, ComputeDVector

70

General comments: This algorithm is called three times using the symbol ‹ instead of its name
StarMap. We recommend using its name for reasons of consistency. Since
the algorithm essentially evaluates a polynomial, one might consider using
Horner’s algorithm for speeding up the computation.

Code comments: Implemented using stream programming. The case n “ 0 is correctly in-
cluded in the algorithm as a special case. Treating it explicitly as a special
case by testing a.isEmpty() is not necessary.

Algorithm 8.11: GetShuffleArgument

Called by: –

Subalgorithm of: GenVerifiableShuffle

General comments: none

Code comments: The verification of n ď ν is done implicitly by verifying against length of ck.
But this results in n ď pν ` 1q.

Algorithm 8.12: VerifyShuffleArgument

Called by: –

Subalgorithm of: VerifyShuffle

General comments: none

Code comments: See check for ν in GetShuffleArgument.

Algorithm 8.13: ToMatrix

Called by: –

Subalgorithm of: GetShuffleArgument, VerifyShuffleArgument

General comments: none

Code comments: Implemented using stream programming.

Algorithm 8.14: Transpose

Called by: –

Subalgorithm of: GetShuffleArgument, VerifyShuffleArgument

General comments: none

Code comments: Implemented using stream programming.

Algorithm 8.15: GetMultiExponentiationArgument

Called by: –

Subalgorithm of: GetShuffleArgument

71

General comments: Inconsistent usage of description for vectors: x vs. x⃗. Omit explica-
tions in the specification. Here, the explanation comment at Line 8
confuses an implementer: Ensuring CBm “ GetCommitmentp0, 0, ckq and
GetCiphertextpg⃗bm , τm, ckq “ GetCiphertextp⃗1, p,pkq? Does the imple-
menter have to ensure that? (No, it just states a fact)

Code comments: Implemented using stream programming.

Algorithm 8.16: VerifyMultiExponentiationArgument

Called by: –

Subalgorithm of: VerifyShuffleArgument

General comments: Inconsistent nomenclature for vectors: c⃗A vs. cB

Code comments: Implemented using stream programming. Suspicious claim by the imple-
menter without any assertion: “Hash value is guaranteed to be smaller

than q”. The claim is implicitly true, but explicitly unknown here. Only
when following the caller’s hierarchy up one finds its explicit check at Mixnet-
Service. We suggest to reference it. [updated in December release: comment
clarified]

Algorithm 8.17: GetDiagonalProducts

Called by: –

Subalgorithm of: GetMultiExponentiationArgument

General comments: The usual constraint m,n ě 1 for excluding empty input matrices is missing
here.

Code comments: The computation of dk is not implemented using an explicit call of GetCi-
phertext. This is not aligned with the pseudocode.

Algorithm 8.18: GetProductArgument

Called by: –

Subalgorithm of: GetShuffleArgument

General comments: none

Code comments: Implemented using stream programming. The requirement n ď ν is not
checked explicitly. However, the implicit check results in n ď pν ` 1q. See
check for ν in GetShuffleArgument. [updated in December release]

Algorithm 8.19: VerifyProductArgument

Called by: –

Subalgorithm of: VerifyShuffleArgument

General comments: No requirements for lower bound set for n. [updated in December release]

72

Code comments: The requirement n ď ν is not checked. [updated in December release]

Algorithm 8.20: GetHadamardArgument

Called by: –

Subalgorithm of: GetProductArgument

General comments: none

Code comments: The value ν is set to be the length of ck. But the specification states that
length of ck is pν ` 1q. Stream programming is used instead of for loops. In
the specification, some sums and products (e.g. cD and t) count from 1, but
implementation starts at 0 and therefore needs additional code to compensate
for it, which is error prone. We recommend following the specification as
precisely as possible.

Algorithm 8.21: VerifyHadamardArgument

Called by: –

Subalgorithm of: VerifyProductArgument

General comments: none

Code comments: The values p, q are taken from input, however, specification requires it to be
from context. Requirement of n ą 0 is not checked explicitly.

Algorithm 8.22: GetZeroArgument

Called by: –

Subalgorithm of: GetHadamardArgument

General comments: none

Code comments: The specification requires n,m ą 0. However, this is never checked explicitly,
but fails due to a side-effect if m “ 0.

Algorithm 8.23: VerifyZeroArgument

Called by: –

Subalgorithm of: VerifyHadamardArgument

General comments:

Code comments: The K statement of verifCd is not aligned to the other K statements. The
statement “value should be 1” should be “value is not 1”.

Algorithm 8.24: ComputeDVector

Called by: –

Subalgorithm of: GetZeroArgument

73

General comments: The usual constraint m,n ě 1 for excluding empty input matrices is also
missing here. [updated in December release] Instead of the comment “break
from loop and proceed with next k”, it would be better to surround Line 8
with an if-statement that tests for j ď m.

Code comments: According to the algorithm, m “ 0 is allowed, but the length of the inputs A
and B can certainly not be 0 (the current implementation computes m “ ´1

in that case, which does not make sense). This test is missing.

Algorithm 8.25: GetSingleValueProductArgument

Called by: –

Subalgorithm of: GetProductArgument

General comments: none

Code comments: Most of the context is derived from the input element statement and not
explicitly passed to the algorithm. Hence, also no cross checks are performed.
x is converted in a group element of size q. What if x ą q?

Algorithm 8.26: VerifySingleValueProductArgument

Called by: –

Subalgorithm of: VerifyProductArgument

General comments: none

Code comments: Same remarks as for GetSingleValueProductArgument.

3.2.8. Zero-Knowledge Proofs

This category of algorithms implements four different types of zero-knowledge proofs.
Since they can be regarded as special cases of a generic preimage proof, they have
all a similar general structure. In the implementation of the algorithms, we observed
that the return values of the verification methods are inconsistent: verifySchnorr,
verifyExponentiation, and verifyPlaintextEquality return a value of type boolean,
whereas verifyDecryption returns an instance of the class VerificationResult (like
the method verifyShuffle from the mix-net). We recommend making this more con-
sistent.

We also observed that the following code snippet for computing the value haux appears
multiple times in almost exactly the same form across the implementations of all proof
generation and verification algorithms (only the domain separation string varies from
case to case). For reducing the quantity and improving the quality of the code, we
recommend implementing an appropriate additional abstraction, for example in form
of a static helper method. Furthermore, we recommend that the distinction between
empty and non-empty auxiliary information is either removed or explicitly included in

74

the pseudocode (using comments is not an appropriate way for defining such important
technical details).

Figure 6: Code snippet from the class SchnorrProofService.

Algorithm 9.1: ComputePhiSchnorr

Called by: –

Subalgorithm of: GenSchnorrProof, VerifySchnorr

General comments: none

Code comments: none

Algorithm 9.2: GenSchnorrProof

Called by: –

Subalgorithm of: SetupTallyCCM

General comments: The comment “if iaux is empty, we omit it” should be made explicit in the
algorithm. Otherwise, it looks as if the code in Lines 105–112 does not match
with the specification.

Code comments: none

Algorithm 9.3: VerifySchnorr

Called by: –

Subalgorithm of: SetupTallyEB

General comments: The wrong font (x instead of x) is used for the variable storing the return
value of ComputePhiSchnorr. [updated in December release] For better consis-
tency with GenSchnorrProof, we recommend merging Line 5 and 6. [updated
in December release] Same comment about iaux being empty as above.

75

Code comments: For better matching with Line 3 of the pseudocode, we recommend merging
the code Lines 153–154. [updated in December release]

Algorithm 9.4: ComputePhiDecryption

Called by: –

Subalgorithm of: GenDecryptionProof, VerifyDecryption

General comments: The number of keys is usually limited to ℓ ą 0 (for example in GenKeyPair),
but here no such restriction is imposed. We are not sure if this is on purpose
or a mistake.

Code comments: Implemented using stream programming.

Algorithm 9.5: GenDecryptionProof

Called by: –

Subalgorithm of: GenVerifiableDecryptions

General comments: Same comment about iaux being empty as above.

Code comments: Computation of values yi implemented using stream programming. The
constraint ℓ ą 0 remains unchecked. Division in Gq is implemented using
GqElement::multiply and GqElement::invert. For better readability, we
recommend introducing an additional method GqElement::divide. [updated
in December release: ℓ ą 0 remains unchecked]

Algorithm 9.6: VerifyDecryption

Called by: –

Subalgorithm of: VerifyDecryptions, VerifyMixDecOnline, VerifyMixDecOffline

General comments: Same comment about iaux being empty as above.

Code comments: The constraint ℓ ą 0 remains unchecked. Computation of values yi and c1
i

implemented using stream programming.

Algorithm 9.7: ComputePhiExponentiation

Called by: –

Subalgorithm of: GenExponentiationProof, VerifyExponentiation

General comments: The constraint of n P N` being positive could possibly removed.

Code comments: Implemented using stream programming.

Algorithm 9.8: GenExponentiationProof

Called by: –

Subalgorithm of: GenEncLongCodeShares, CreateVote, PartialDecryptPCC, CreateLCCShare,
CreateLVCCShare

76

General comments: Same comment about iaux being empty as above.

Code comments: none

Algorithm 9.9: VerifyExponentiation

Called by: –

Subalgorithm of: VerifyBallotCCR, DecryptPCC, VerifyVotingClientProofs, VerifyEncryptedPC-
CExponentiationProofsVerificationCardSet, VerifyEncryptedCKExponentiation-
ProofsVerificationCardSet

General comments: Same comment about iaux being empty as above.

Code comments: Computation of values c1
i implemented using stream programming.

Algorithm 9.10: ComputePhiPlaintextEquality

Called by: –

Subalgorithm of: GenPlaintextEqualityProof, VerifyPlaintextEquality

General comments: none

Code comments: Here again, division in Gq is implemented using GqElement::multiply and
GqElement::invert, but GqElement::divide would be more appropriate
(same remark as for GenDecryptionProof). [updated in December release]

Algorithm 9.11: GenPlaintextEqualityProof

Called by: –

Subalgorithm of: CreateVote

General comments: Same comment about iaux being empty as above.

Code comments: Same remark about implementing the division c1
c1
1
. [updated in

December release] Computation of the pair z “ pb1 ` e¨r, b2 `

e¨r1
q using the methods VectorUtils::vectorAddition and

VectorUtils::vectorScalarMultiplication is correct, but not very
obvious.

Algorithm 9.12: VerifyPlaintextEquality

Called by: –

Subalgorithm of: VerifyBallotCCR, VerifyVotingClientProofs

General comments: Same comment about iaux being empty as above.

Code comments: Same remark about implementing the division c1
c1
1
. For better matching with

Line 4 in the pseudocode, we recommend merging the code Lines 216–217.
[updated in December release]

77

3.2.9. TypeScript

The client implementation in JavaScript also depends on some of the basic algorithms
defined in [CryptPrim]. They are available in a separate Maven project called crypto-
primitives-ts, which provides a TypeScript implementation of a subset of the Java algo-
rithms implemented in crypto-primitives. In the light of the numbers given in Table 2, the
size of TypeScript implementation is approximately 60% less than the size of the Java
implementation (9’284 code lines compared to 22’428). We have analyzed the TypeScript
implementation as systematically as the Java implementation. Here is the complete list
of crypto-primitives algorithms implemented in TypeScript:

CutToBitLength RecursiveHash GetCiphertextExponentiation
ByteArrayToInteger RecursiveHashToZq ComputePhiExponentiation
IntegerToByteArray RecursiveHashOfLength GenExponentiationProof
StringToByteArray HashAndSquare VerifyExponentiation
StringToInteger Argon2id ComputePhiPlaintextEquality
IntegerToString IsProbablePrime GenPlaintextEqualityProof
RandomBytes GenCiphertextSymmetric VerifyPlaintextEquality
GenRandomInteger GetPlaintextSymmetric
GenRandomVector GetCiphertext

Note that some of the implemented algorithms, for example VerifyExponentiation and
VerifyPlaintextEquality, are never called by the voting client (we see that they are used
for performing client-side tests, but then they should be part of the test code). Other
algorithms, for example all sub-algorithms of IsProbablePrime, are missing. [updated in
December release: algorithms removed from specification] Generally, we recommend to
reduce crypto-primitives-ts to what is really needed by the client, but to implement these
algorithms to the full extent.

The TypeScript implementation crypto-primitives-ts is heavily inspired by the Java im-
plementation crypto-primitives. The impression is that most of the algorithms were im-
plemented by taking the corresponding Java code and adapting it to TypeScript. It is
remarkable how many of our comments about the Java implementation apply in the same
way to the TypeScript implementation. For example, the implementation of GenRandom-
Integer delegates the generation of the random integers to Verificatum’s LargeInteger
in the same way it is delegated to the BigInteger class in Java, i.e., the code is very dif-
ferent from the pseudocode in both implementations. Other examples are the respective
implementations of the algorithm GenCiphertextSymmetric, which restricts the associated
data to 255 characters in exactly the same but unspecified way, and of the algorithm
HashAndSquare, which uses the same method fromSquareRoot in Java and TypeScript
to compute modular squaring, but in a way that its correctness is not obvious. But not
only the pure algorithms are very similar, other design aspects of the library have also
been adopted from Java. An example for this is the questionable design of the ElGamal

78

implementation (see Subsection 3.2.6), which deals with many data classes and a mixture
of static and non-static methods for the algorithms.

Due to these very strong similarities between the two implementations, we do not list
and comment every algorithm separately. Instead of repeating ourselves, we recommend
revising the TypeScript implementation right along with the Java implementation. Some
issues that are specific to the TypeScript implementation are discussed below:

Primality Testing
Unlike the Java implementation, which delegates primality testing to the Java class
BigInteger, the TypeScript implementation provides its own primality test. The
implemented primality test is an enhanced Baillie-PSW test as specified in [Crypt-
Prim, Section 4.6]. However, the provided TypeScript implementation is not aligned
with the specification.

The algorithm isProbablePrime from [CryptPrim] is implemented as part of the
internal class VerificatumBigInteger, but already the method signature is quite
confusing. In the specification, the algorithm has a single parameter n, which denotes
the candidate to be tested for primality. In the implementation, however, there is
a single parameter certainty, which remains completely unused. It is even more
confusing that in the exposed ImmutableBigInteger class, the certainty parameter
is named n. Surprisingly, when the primality test is called in the GqGroup class,
a certainty level is computed based on the bit length of p and passed to the test,
although it is ignored later.

In addition to the confusing method signature, the implementation of the pri-
mality test does not conform to the specification as well. The deviations are so
fundamental that the code cannot be mapped to the specification. Therefore, it can
not be properly audited.

Finally, it is a small detail, but it is almost suspicious that like in the Java
implementation, 19 is not considered as a prime number in TypeScript either:

Immutability
A very positive point from a software design perspective are the three immutable
classes ImmutableBigInteger, ImmutableArray, and ImmutableUint8Array (repre-
senting an immutable byte array), which extend the toolbox and clearly indicate
the classes’ immutability property. There are also other classes, such as for example
GqElement or GqGroup, which do not have the term immutable in their class name,
but which are at least immutable and documented as such. An irritating excep-
tion is the TypeScript class GroupVector, which is not immutable. Note that the
equivalent Java class is immutable and documented as such. Therefore, it could and
should be assumed that the TypeScript version is immutable as well, especially if
the class is commented with “This is effectively a decorator for the ImmutableList
class”. This inconsistency between the two libraries is very confusing, and it is not

79

entirely clear whether GroupVector is intentionally or unintentionally mutable in
TypeScript. This inconsistency should be clarified and fixed.

3.3. System Specification

Similar to the algorithms of the crypto-primitives component [CryptPrim], the 34 algo-
rithms contained in the system specification are well-specified in [SysSpec]. This allows
auditors to directly access the associated code within the implementation. Most of the
algorithms are implemented in dedicated Java classes, whose class names and method
names correspond to the algorithm names according to a clear pattern. This is an im-
portant improvement compared to previous versions of the source code and makes it
better accessible for reviewers. The general alignment of the source code with the pseu-
docode is now also at a relatively high and satisfactory level, which makes deviations
more recognizable.

Much more complex than the audit of the pure implementation of the algorithms is the
question of how the algorithms are embedded in the overall system. This way, it is
not always obvious when and by what the algorithms are called and where the context
and input values are provided from. In particular, the unsatisfactory and inconsistent
treatment of context (see Subsection 3.1) makes traceability tedious. The fact that not
all objects are strictly immutable does not simplify the situation. Often, the input object
contains Lists of elements, but the Java interface List does not cover immutability. Even
if an immutable list is passed when the method is called, this is not apparent from the
method signature and can only be determined by a deeper analysis of all the associated
code. Improving this situation would be of great benefit not only to the reviewers but
also to the robustness and maintainability of the code base.

The algorithms are grouped according to the three general phases of an election: Config-
uration Phase, Voting Phase, and Counting Phase. A small number of general algorithms
are summarized in the section Preliminaries.

3.3.1. Preliminaries

The first section of the system algorithms consists of a set of utility algorithms. Al-
though all of these algorithms are important to the protocol, the current specification
and implementation give a different impression. For example, the two algorithms En-
codeVotingOptions and DecodeVotingOptions are essential to make the protocol verifiable,
but the algorithms are neither called in the protocol nor are they implemented. The two
algorithms related to correctnessID are also not to be found in the system, but reside
somewhere in the crypto-primitives-domain component. Given the importance of these
algorithms, we believe that the specification and implementation should be revised.

Algorithm 3.1: EncodeVotingOptions

80

Called by: –

Subalgorithm of: –

General comments: This algorithm is never called in the protocol. We recommend making cor-
responding calls more explicit.

Code comments: The code does not include an implementation of this algorithm.

Algorithm 3.2: DecodeVotingOptions

Called by: –

Subalgorithm of: –

General comments: This algorithm is never called in the protocol. We recommend making cor-
responding calls more explicit. [updated in October release]

Code comments: The code does not include an implementation of this algorithm. [updated in
October release]

Algorithm 3.3: Factorize

Called by: –

Subalgorithm of: ProcessPlaintexts, VerifyProcessPlaintexts

General comments: none

Code comments: If the message cannot be factorized, an exception is thrown instead of re-
turning K as specified.

Algorithm 3.4: GetCorrectnessIdForSelectionIndex

Called by: –

Subalgorithm of: CreateLCCShare, ExtractCRC

General comments: none

Code comments: This algorithm is implemented in the Crypto Primitives Domain, which is
confusing as the algorithm is not specified in the Cryptographic Primitives
Specification. We recommend moving either the implementation or the spec-
ification of the algorithm for a better alignment between specification and
implementation.

Algorithm 3.5: GetCorrectnessIdForVotingOptionIndex

Called by: –

Subalgorithm of: GenVerDat, GenCMTable

General comments: none

Code comments: Same remark as for GetCorrectnessIdForSelectionIndex.

81

3.3.2. Configuration Phase

Most algorithms of the configuration phase are called by the setup component and are
therefore located in the secure-data-manager. Two algorithms are called by the CCR
control component and one algorithm by the CCM control component. These three
algorithms are located in the control-components. Given the code base, it is not clear why
there is still a distinction between CCR and CCM in the specification (see Subsection 3.1).
This artificial distinction must be dropped later, during the tallying phase. There, it is
important for security reasons that the CCRs and CCMs are indeed the same instances.
We suppose that the terms CCR and CCM are legacy and we suggest to omit the
distinction and propose the umbrella term CC to eliminate confusion and improve the
alignment with the source code.

Algorithm 4.1: GenKeysCCR

Called by: CCR

Subalgorithm of: –

General comments: none

Code comments: It is not obvious why the random source is passed to the GenKeyPair al-
gorithm explicitly. In most other cases, the random source is part of the
underlying service class and not of the algorithm’s input. This is confus-
ing and indicates an inconsistent API design. We recommend a consistent
handling of the random source throughout the code base.

Algorithm 4.2: GenSetupEncryptionKeys

Called by: Setup Component

Subalgorithm of: –

General comments: none

Code comments: Same remark as for GenKeysCCR.

Algorithm 4.3: GenVerDat

Called by: Setup Component

Subalgorithm of: –

General comments: On Line 16, the algorithm GenUniqueDezimalStrings returns a list of strings
and not a single value. Please assign the first element of the returned list to
BCKid to prevent confusion. [updated in December release: comment added]

82

Code comments: The unspecified conversion of vcid and SVKid to lower case is problem-
atic. If it is important that these values are in lower case, then we rec-
ommend defining the base16 and base32 alphabets in lower case and that
the algorithms GenRandomBase16String and GenRandomBase32String return
strings of the corresponding alphabet. Instead of using the specified algo-
rithm Base64Encode for the base64 encoding the class java.util.Base64 is
used. Even though the outcome is the same, not using the specified algo-
rithms results in code duplication which is a blunt source of error for fu-
ture maintenance. [updated in November release] In addition, the general
alignment with the specification could be further improved: lines 4 and 5 are
swapped, p_k and primesMappingTableEntries should be named p_tilde_k

and pTable_entries, respectively. [updated in December release] The two
lists K and k are expected as output and not a list of pKi, kiq tuples.

Algorithm 4.4: GenEncLongCodeShares

Called by: CCR

Subalgorithm of: –

General comments: The input cpCC and the output cexpPCC,j are elements of pGn`1
q q

NE and not of
pGq ˆGn

q q
NE and GenExponentiationProof expects a vector for the bases and a

vector for the exponents and not a tuple of a single value and a vector each.
For example, pg, cpCC,idq should be pg, cpCC,id0 , . . . , cpCC,idnq. The updated list
LgenVC,j is a side-effect of the algorithm.

Code comments: The input validation is insufficient as the input is not cross checked with the
context. [updated in December release] An unspecified list of vcPublicKeys

is additionally passed as input to the algorithm and later stored in the list
LgenVC,j . It is not clear what these public keys are used for. If they are needed,
why are they not specified.

Algorithm 4.5: CombineEncLongCodeShares

Called by: Setup Component

Subalgorithm of: –

General comments: The input CexpPCC is an element of
`

pGn`1
q q

NE
˘4 and not

`

pGq ˆ Gn
q q

NE
˘4. Also

the set definition of the output cpC is wrong in the same way.

Code comments: The input validation is insufficient as the input is not cross checked with the
context. [updated in October release] Instead of using the specified algorithm
Base64Encode, the encoding is implemented using the java.util.Base64

class (see remarks for GenVerDat). [updated in November release]

Algorithm 4.6: GenCMTable

Called by: Setup Component

Subalgorithm of: –

83

General comments: GenUniqueDezimalStrings returns a list of strings and not a single value (see
remarks for GenVerDat) [updated in December release: comment added] and
wrong set definition for cpC (see remarks for CombineEncLongCodeShares)

Code comments: The specified algorithm Base64Encode is not used (see remarks for GenVer-
Dat). [updated in November release] The final ordering of the CMtable is
implemented implicitly by creating a new Java TreeMap object. Even though
a TreeMap orders its elements according to the Java documentation, we would
prefer the ordering to be implemented explicitly to make the code more trans-
parent and aligned to the specification.

Algorithm 4.7: GenVerCardSetKeys

Called by: Setup Component

Subalgorithm of: –

General comments: none

Code comments: none

Algorithm 4.8: GenCredDat

Called by: Setup Component

Subalgorithm of: –

General comments: The algorithm Argon2id expects a byte array as input argument, but SVKid

is a base32 string. Hence, SVKid needs to be converted before it is passed to
the algorithm. [updated in October release]

Code comments: The algorithm Argon2id is named GenArgon2id and returns not only the tag
but also the salt. The salt is concatenated to the ciphertext and to the nonce
of VCksid. It is then returned as part of the base64 encoded VCksid. This
is not in alignment with the specification. [updated in October release] The
algorithm Base64Encode is not used (see remarks for GenVerDat). [updated
in November release]

Algorithm 4.9: SetupTallyCCM

Called by: CCM

Subalgorithm of: –

General comments: none

Code comments: none

Algorithm 4.10: SetupTallyEB

Called by: Setup Component

Subalgorithm of: –

General comments: none

84

Code comments: No context is provided to the algorithm but it is derived from the input.
[updated in December release] The alignment with the specification should
be further improved. Instead of returning K an exception is thrown and the
passwords of the electoral board members PW are hashed as a list and not as
single values as described in the specification. [updated in December release]
In addition, the first loop over the control components is not implemented as
a loop but as copy/paste of several lines of code. This is not only inconsistent
to the specification but also bad practice. [updated in December release] From
an operational perspective, wiping passwords after usage is recommended to
reduce the time passwords are in plaintext in memory. However, we think
the implementation should be improved. We recommended already several
times to work strictly with immutable objects. Therefore we recommend
introducing special immutable but wipe-able objects. These objects cannot
be changed but provide a clear interface to wipe their data after usage.

3.3.3. Voting Phase

The voting phase is the only phase in which not all algorithms are implemented in
Java. Some of them are executed by the voting client and, hence, they are implemented
in JavaScript. It is also the only phase in which the system is exposed to the public
and many voters may interact with the system exactly at the same time or a single
voter may try to cast multiple messages at the same time. It is therefore essential that
the system can handle multiple messages in parallel and that a proper synchronization
is implemented to guarantee that only a single message of a certain type per voter is
accepted. We analyzed both aspects and both of them have been carefully taken care of.
Especially synchronization has been properly implemented on a database level which is
a major improvement compared to previous versions of the system.

As the voting client is still implemented in an old and no longer supported framework
called AngularJS we focused mainly on the pure algorithms. [updated in October re-
lease] We were told that the client will be replaced by an implementation based on an
up-to-date framework before going live. We are surprised that a partially trustworthy
component, which is not secured by cryptographic means but operational means, is re-
placed at the last moment. The algorithms, and that is why we focused on them, will
probably remain the same. But introducing a new framework with all its dependencies
inevitably comes with new security risks.

Having a look at the communication between voting client and voting system it is con-
spicuous that the exchanged messages contain too much information. For example, the
cast vote consists not only of the specified data but also of a list of correctnessIds
and a not further explained credentialId. Although we do not see a concrete attack
based on the additional information, it is a deviation from the specification which raises

85

questions and confusions. Similar to the algorithms, we recommend strictly following the
specification also for the exchanged messages.

Algorithm 5.1: GetKey

Called by: Voting Client

Subalgorithm of: –

General comments: The four lines 10 ´ 13 dealing with splitting VCksid,combined into the cipher-
text VCksid,ciphertext and nonce VCksid,nonce renders the algorithm unneces-
sarily cumbersome. In addition, exactly the same four lines are repeated
in two subsequent algorithms. We recommend introducing a dedicated sub-
algorithm or changing GetPlaintextSymmetric such that the combined value
can be passed directly. Argon2id expects a byte array and not a string (see
remarks for GenCredDat). [updated in October release]

Code comments: The alignment with the specification should be improved. Instead of us-
ing the specified Base64Encode and Base64Decode algorithms a third party
Buffer implementation offering base64 conversions is used. [updated in
November release] Also the order of statements is not aligned with the spec-
ification. [updated in November release] Finally, the implementation deals
with an unspecified salt taken from VCksid and passed to Argon2id (which is
named getArgon2id). [updated in October release]

Algorithm 5.2: CreateVote

Called by: Voting Client

Subalgorithm of: –

General comments: Since the voter knows only the voting options, but has no clue about the
prime number encoding, the algorithm should receive a list of selected voting
options as input, not a list of selected encoded voting options.

Code comments: The context is derived from the input elements and not passed explicitly
to the algorithm. Hence, also no cross checks are performed. [updated in
November release]

Algorithm 5.3: VerifyBallotCCR

Called by: CCR

Subalgorithm of: –

General comments: none

86

Code comments: The values ψ and δ̂ are not taken from the passed context but retrieved from
external services. The reason for this is not obvious. We recommend taking
all values exclusively from the context and the input object. This renders the
algorithms more independent, more concise, and prevents code duplication.
[updated in November release]

Algorithm 5.4: PartialDecryptPCC

Called by: CCR

Subalgorithm of: –

General comments: The list LdecPCC,j is taken from the context but the list is also modified during
the operation, which is very problematic. In our understanding, the context
represents the ground truth, which is either received from the election author-
ity over an authentic channel or computed based on the received data during
setup. For simplicity, certain values may not be received from the election
authority but are configured as system-wide parameters. Modifying the list
LdecPCC,j violates the immutability of the context and produces side-effects.
An algorithm is supposed to transform a given input into an output without
side-effects. The same input should always result in the same output (of
course, apart from the random values generated during the algorithm), i.e.
an algorithm should be idempotent. [updated in November release: introduced
new section Stateful Lists and Maps but algorithm still produces side-effects]

Code comments: The values ψ and δ̂ are not taken from the passed context (see remarks
for VerifyBallotCCR). [updated in November release] Also, the list LdecPCC,j is
not part of the context but indirectly accessed using a service during the
operation.

Algorithm 5.5: DecryptPCC

Called by: CCR

Subalgorithm of: –

General comments: The definition of ĵ is inaccurate. It should be ĵ “ pĵ1, ĵ2, ĵ3q, ĵk P t1, . . . , 4uzj

[updated in December release]

Code comments: The values ψ and δ̂ are not taken from the passed context (see remarks
for VerifyBallotCCR). Also, ĵ is not taken from the context but computed
locally. [updated in November release] The indexing using k and index is
very confusing and very difficult to map to the specification. We strongly
recommend improving the alignment for example by introducing dedicated
zero- and one-based vector classes. Instead of returning K, an exception is
thrown.

Algorithm 5.6: CreateLCCShare

Called by: CCR

87

Subalgorithm of: –

General comments: The list LsentVotes,j of the context is altered (see remarks for PartialDecrypt-
PCC). And the algorithm GenExponentiationProof expects a vector as input
for the bases and exponents and not a tuple (see remarks for GenEncLong-
CodeShares).

Code comments: The value ψ is not taken from the passed context (see remarks for VerifyBal-
lotCCR), the algorithm Base64Encode is not used (see remarks for GenVer-
Dat), [updated in November release] and instead of returning K, an exception
is thrown. In addition, the lists LdecPCC,j and LsentVotes,j are not part of the
context but indirectly accessed using services during operation.

Algorithm 5.7: ExtractCRC

Called by: Voting Server

Subalgorithm of: –

General comments: The variable CCid,i is reassigned, which we do not recommend. It renders the
algorithm more difficult to read and to understand and it results immedi-
ately in deviations. Beside CC_id_i, the current implementation introduces
a variable CC_id_i_plaintext. [updated in December release]

Code comments: In the comment of the algorithm it is declared that the algorithm may throw
a JsonProcessingException. However, this is never the case. [updated in
December release] On the other hand, an exception is thrown instead of
returning K and the algorithm Base64Encode is not used (see remarks for
GenVerDat). [updated in November release] A further deviation is the return
value, which contains not only the list CCid but also ψ. [updated in December
release]

Algorithm 5.8: CreateConfirmMessage

Called by: Voting Client

Subalgorithm of: –

General comments: none

Code comments: The group of kid is not cross checked with the context. [updated in December
release]

Algorithm 5.9: CreateLVCCShare

Called by: CCR

Subalgorithm of: –

General comments: The list LconfirmationAttempts,j of the context is altered (see remarks for Par-
tialDecryptPCC) and the list LsentVotes,j is neither part of the context nor
input.[updated in November release: introduced Stateful Lists and Maps]

88

Code comments: The input is not cross checked with the context and g is derived from the
input instead of taken from the context. [updated in November release] The
algorithm Base64Encode is not used (see remarks for GenVerDat). [updated
in November release] Instead of verifying the number of attempts with
an explicit if statement as specified, a helper function checkArguments is
used. This results in an inappropriate IllegalArgumentExcpetion instead
of the specified return value K. In addition, the lists LconfirmedVotes,j and
LconfirmationAttempts,j are not part of the context but indirectly accessed using
services.

Algorithm 5.10: VerifyLVCCHash

Called by: CCR

Subalgorithm of: –

General comments: The list LconfirmedVoted,j of the context is altered (see remarks for PartialDe-
cryptPCC) and the list LsentVotes,j is neither part of the context nor input.
The definition of ĵ is inaccurate (see remarks for DecryptPCC).[updated in
November release: introduced Stateful Lists and Maps]

Code comments: The lists LconfirmedVotes,j is not part of the context but indirectly accessed
using a service. The algorithm Base64Encode is not used (see remarks for
GenVerDat).

Algorithm 5.11: ExtractVCC

Called by: Voting Server

Subalgorithm of: –

General comments: The variable VCCid is reassigned (see remarks for ExtractCRC). [updated in
December release]

Code comments: The CMtable is not immutable, which renders input validation worthless.
We strongly recommend working exclusively with immutable objects. It is
confusing that two different methods are used to create an empty list (once
List.of() is used and the other time Collections.emptyList()). [updated
in December release] If there is a reason to use different methods, then please
comment it, otherwise always use the same method to reduce complexity and
to raise fewer questions. The algorithms Base64Encode and Base64Decode are
not used (see remarks for GenVerDat) and an exception is thrown instead of
returning K.

3.3.4. Tally Phase

The tally phase concludes the protocol with a number of algorithms executed by the
control components and the offline tally control component. After the control components

89

mixed and partially decrypted the recorded votes, the offline tally control component
verifies the proofs contained in the ballots and the shuffle and decryption proofs from
the control components before performing a final mix and decryption. We do not see
any added value in verifying all the proofs by the offline tally component. Verifying the
proofs only increases complexity and the time used by the offline tally control component
before presenting the final result. But under the given trust assumptions (at least one
control component is honest) and the fact that the offline tally control component is not
independent from the control components (they both use partially the same code base)
it does not increase security. Therefore, we recommend to refrain from executing the two
verification algorithms by the offline tally control component.

On the other hand, we question the abrupt end of the protocol. The protocol ends
with the offline tally control component presenting a list of prime numbers. However,
the prime numbers have no meaning and are only a technical detail used to encode and
encrypt a vote. They should not be exposed. The mapping from voting options to prime
numbers and vice versa must be performed in a verifiable manner and the final result is
then a list of voting options. Only this way, it is not possible to completely invert the
final result without being recognized. [updated in October release]

Algorithm 6.1: GetMixnetInitialCiphertexts

Called by: CCM

Subalgorithm of: VerifyOnlineControlComponentsBallotBox

General comments: Inaccurate notation on Line 6: cinit,j Ð pcinit,j , Etrivial, Etrivialq. Given the
context, it is clear what is meant. However, we recommend introducing a
dedicated notation for vector concatenation to prevent confusion. Context
variables ee and bb not needed in algorithm.

Code comments: No context is provided to the algorithm and hence, no cross checking is
performed. [updated in December release] The map vcMapj is not immutable
and therefore the demand for strict immutability is violated.

Algorithm 6.2: VerifyMixDecOnline

Called by: CCM

Subalgorithm of: VerifyOnlineControlComponentsBallotBox

General comments: Inaccurate notation on Line 13: if decryptVerifk ^ shuffleVerifk @ tku then.
Please use proper notation for the possible values of k [updated in December
release]

90

Code comments: The input is not cross checked with the context [updated in December release]
and the alignment with the specification should be improved. Instead of
two variables cdec,1 and πdec,1 there is only one variable dec_1 for an object
which holds the values internally. This is especially confusing when calling
the algorithm VerifyDecryptions with a different number of arguments than
specified. Also confusing is the index k which runs from 1 to j ´ 1 and not
from 2 to j as specified. Starting at 1 conflicts the variable name dec_1 which
then should be named dec_0. The final if-statement is missing. Aspects of it
have been moved into the preceding for-loop, which is difficult to map to the
specification. [updated in December release: but should be further improved]

Algorithm 6.3: MixDecOnline

Called by: CCM

Subalgorithm of: –

General comments: In the description of the context, it is confusing to describe Lbb,j as a “List of
shuffled and decrypted ballot boxes”, if a list of ballot box IDs is meant. The
updated list Lbb,j of such IDs is a side-effect of the algorithm. We recommend
removing the requirement bb R Lbb,j and the side-effect from the algorithm.

Code comments: The input is not cross checked with the context. [updated in December re-
lease] The output has not the structure as defined in the specification and
wrongly contains the value ELpk. [updated in December release: structure still
not aligned]

Algorithm 6.4: VerifyVotingClientProofs

Called by: TCM

Subalgorithm of: VerifyOnlineControlComponentsBallotBox

General comments: Inaccurate notation on Line 13: if VerifExpi ^VerifEqEnci @ tiu then. Please
use proper notation for the possible values of i. [updated in December release]

Code comments: The input is not cross checked with the context. Minor variable name in-
consistencies: pk_CCR_tilde should be pk_tilde_CCR to be consistent with
E1_tilde_1_i and E2_tilde_i and Phi_1_0 should be phi_1_0. [updated in
December release: still minor discrepancies]

Algorithm 6.5: VerifyMixDecOffline

Called by: TCM

Subalgorithm of: –

General comments:

Code comments: The input is not cross checked with the context. [updated in December release]

Algorithm 6.6: MixDecOffline

91

Called by: TCM

Subalgorithm of: –

General comments: In the description of the context, it is confusing to describe Lbb,Tally as a “List
of shuffled and decrypted ballot boxes”, if a list of ballot box IDs is meant.
The updated list Lbb,Tally of such IDs is a side-effect of the algorithm. We
recommend removing the requirement bb R Lbb,Tally and the side-effect from
the algorithm.

Code comments: The context is derived from the input and therefore no cross checking is
possible. [updated in December release] The output has not the structure de-
fined in the specification. Regarding the wiping of passwords see remarks for
SetupTallyEB. The comment “EB_pk is computed during the generation

of the key pair (EB_pk, EB_sk)” should not be necessary. It is a sign that
the design of the ElGamal algorithms could be further improved for reaching
a better alignment with the specification.

Algorithm 6.7: ProcessPlaintexts

Called by: TCM

Subalgorithm of: –

General comments: A list of integer factorizations should not be regarded as the election result.
The decoding step is missing (see discussion in Subsection 3.1.3). [updated in
October release] The decrypted write-ins ψi,1, . . . , ψi,l´1 are ignored. [updated
in November release] The context variables g, ee, and bb are not needed in
the algorithm.

Code comments: The context is derived from the input and therefore no cross checking is
possible.[updated in December release]

3.4. Verifier

Given the late release date in mid-August, the start of our analysis of the verifier compo-
nent has been postponed compared to the other components. Note that an update of the
verifier specification [VerSpec] has been released together with the code on August 19.
Since this update included some substantial changes such as an additional algorithm, we
did not have much time left to analyse both the specification and the code in the same
depth as the other components. The discussion included in this subsection summarized
the outcome of our analysis.

The verifier specification makes a distinction between seven so-called verifications and
five algorithms. The verifications are numbered quite inconsistently from 1.01 to 1.03,
from 1.21 to 1.22, and from 2.01 to 2.11, whereas the algorithms are numbered from

92

3.1 to 3.2 and from 4.1 to 4.3. Unfortunately, the difference between verifications and
algorithms is not clear, especially since they are all specified in pseudocode.

Implicitly, there are two additional top-level verification algorithms VerifyConfigPhase and
VerifyTally for the two different verification phases, but unfortunately their pseudocode is
missing for no obvious reason. To improve the clarity and overall structure of the verifier
specification, we recommend calling all specified routines algorithms (as we will do in the
subsequent discussion), introducing a consistent numbering across all algorithms, and
providing pseudocode for the two top-level algorithms .[updated in December release] .

The general purpose and motivation of the verifier specification document is described
by the following statement from the abstract of [VerSpec]:

“Therefore, this document serves as a manual for developing an independent
verifier software and validating or extending the Swiss Post verifier.”

However, we believe that the current document does not fulfill this promise, because many
aspects of the verifier are not sufficiently well specified, for example with respect to the
completeness, authenticity, consistency, and integrity checks in [VerSpec, Sections 3.1–3.4
and 4.1–4.4]. These checks are only specified very vaguely using sentences such as “Verify
that the primes mapping table pTable of all verification card sets are consistent”. More
details are provided for the evidence checks in the algorithms of [VerSpec, Sections 3.5–
3.6 and 4.5], but there is also plenty of room left for interpretations. An example are
the Lines 2–4 of VerifyOnlineControlComponents, which contain vague sentences such as
“Prepare the Context including the election event context” instead of proper pseudocode.
Therefore, it seems impossible for an external party to build a reliable and independent
verifier based only on this document.

Another problem of the specification is the lack of a clear and comprehensive catalog
of tests to perform, which is convincing to include all necessary test and nothing else.
We observed for example that the zero-knowledge proofs πELpk,j of the CCMs’ election
public keys ELpk,j are not checked by the verifier, but no explanation is given of why this
is possibly not necessary. We also observed that some tests are redundant, for example
those involving the encryption group in [VerSpec, Section 3.3]. Given the lack of such a
test catalog in the verifier specification, we were surprised to find it in the README.md
file of the verifier-backend project. As shown in Figure 7, the catalog consists of a total
of 39 verifications (24 for verifying the setup and 15 for the tally), of which each has an
assigned identifier. We recommend moving this table into the verifier specification and
enhancing it with formal descriptions of the respective tests to perform.10

Our final general remark concerning the verifier specification is about the differentiation
between the (human) auditor and the technical aids in [OEV, Art. 5]. In the verifier

10Some resource files, for example resources_en.properties, contain similar lists of verifications in
different languages, but the numbers 200–203 are missing for no obvious reason.

93

Figure 7: Catalog of verification tests as defined in the README.md file of the verifier
backend.

specification, by referring to both of them as the verifier, this differentiation is not
considered:

“For the rest of the document, we will no longer distinguish between auditors
and their technical aid; we refer to the verifier as both the auditor and the
software used by this auditor and assume that the auditor and the technical
aid are trustworthy.” [VerSpec, Section 1.1]

We understand that this differentiation has been given up for reasons of simplicity, but
to check the compliance with the OEV regulations, it creates an additional obstacle.
For example, we consider it as essential to see exactly what a human auditor needs to
check in addition to the checks performed by the machine operated by the human auditor.
Currently, a detailed discussion about how to operate the verifier in practice is somewhat
missing.

We also observed that in some cases, the origin of the input data is not clear without
any doubts. For example the election event context, which is received from the setup
component, also comes with a signature. The verification of this signature is implemented
using the class CheckSignatureElectionEventContextData, but it is not specified in

94

[VerSpec]. In that respect, an even more fundamental question arises by considering the
definition of the setup component, because according to [OEV Annex, 2.9.2], the setup
component cannot be regarded as trustworthy for universal verification. We just wanted
to mention this point as a potential violation of the OEV trust model, without having a
recommendation for coping with it.

The present verifier implementation calls the cryptographic algorithms of the crypto-
primitives components as subroutines. This creates a direct dependency between the
two components (see pom.xml) and ultimately leads to a common code base between
the verifier and the voting system itself. This inherent dependency between the e-voting
system and the verification software does not allow for the detection of a wrong result due
to implementation errors. However, this poses an immediate risk even if the common code
base is open source. The likelihood that an implementation error will not be detected
increases if the shared library is built on top of other external dependencies with large
code bases. Ultimately, this strong coupling thus does not provide truly independent
verification. We consider it inefficient to verify a procedure that has already been verified
by at least one honest control component using the same cryptographic means. However,
for the verification of the final mixing and decryption step, which takes place at the
cantonal level, we consider this dependent verifier to be very valuable. Here, false results
due to inadvertent mishandling can be uncovered. Therefore, we will only audit the
present implementation under this “reduced” aspect.

Generally, the code implementing the verifier component is well structured and clearly
arranged. Therefore, methods implementing the given pseudocode algorithms can be
located and inspected easily. We have already mentioned the dependency to crypto-
primitives, but there is no direct dependency to the e-voting component. Instead, we
found some code that has been copied one-to-one from e-voting to verifier, for example
the code implementing the algorithms VerifyMixDecOffline and VerifyVotingClientProof.
What is problematical here is the implicit dependency that is created by copying code
from one component to another, and also the resulting fact that not all dependencies
to other components are handled in the same way. The design strategy leading to the
current situation should be reconsidered.

3.4.1. Setup Verification

In this section, we summarize our specific findings relative to the setup verification phase
(or config phase). As already noted, the pseudocode for the top-level algorithm Verify-
ConfigPhase is missing. We include this algorithm on top of our summary without giving
it an algorithm number.

Algorithm ???: VerifyConfigPhase

Called by: Auditors

Subalgorithm of: –

95

General comments: The pseudocode of this algorithm is missing.

Code comments: –

Algorithm 1.01: VerifyEncryptionParameters

Called by: –

Subalgorithm of: VerifyConfigPhase

General comments: Lines 2–6 could be merged into a single statement Return pp “ p̂q ^ pq “

q̂q ^ pg “ ĝq.

Code comments: –

Algorithm 1.02: VerifySmallPrimeGroupMembers

Called by: –

Subalgorithm of: VerifyConfigPhase

General comments: Lines 2–6 could be merged into a single statement Return p1
“ p.

Code comments: Group, is derived from the input instead of context.

Algorithm 1.03: VerifyVotingOptions

Called by: –

Subalgorithm of: VerifyConfigPhase

General comments: Inconsistent description of verification for verifA and verifB. We sug-
gest to fusion this algorithm with VerifySmallPrimeGroupMembers due to
overlapping of verifications. Direct verification of p̃ by the result of
GetSmallPrimeGroupMembers. Lines 2–6 could be merged into a single state-
ment verifA Ð pp1

“ p̃q, like in Line 7.

Code comments: In contrast to specification, the implementation does not use elements from
the context. Instead all context-values are derived from ’trusted’ input and
some values from VotingOptionsConstants is used. Pre-validations on p̃ not
required, as it eventually is directly compared for equivalence with p.

Algorithm 1.21: VerifyEncryptedPCCExponentiationProofs

Called by: –

Subalgorithm of: VerifyConfigPhase

General comments: Underspecified. A check is specified using variables (i, j) which
are out of scope. Lines 6-10 could be merged into a single line
Return

Ź

i,j vcsEncryptedPCCVerifj,i.

96

Code comments: Not mappable to specification. Some special object for ’contextAndInputs’ is
taken as input. Then VerifyEncryptedCKExponentiationProofs is called requir-
ing many more parameters. One simply cannot follow that code. Instead of
using for-loop programming, parallel stream programming is used in a com-
pact form.

Algorithm 1.22: VerifyEncryptedCKExponentiationProofs

Called by: –

Subalgorithm of: VerifyConfigPhase

General comments: Same remarks as in VerifyEncryptedPCCExponentiationProofs.

Code comments: Same remarks as in VerifyEncryptedPCCExponentiationProofs.

Algorithm 3.1: VerifyEncryptedPCCExponentiationProofsVerificationCardSet

Called by: –

Subalgorithm of: VerifyEncryptedPCCExponentiationProofs

General comments: Under-specified. Groups not cross checked with context. Semantically base g
and exponent y are not lists but tuples. However, specification regards them
as lists. Questionable naming of exponents as y. Even though, the abuse
of @ is mentioned in the specification, it still is an abuse. The accessibility
scope of variables not respected.

Code comments: Instead of using for-loop programming and following the pseudocode of the
specification, parallel stream programming is used in a compact form. Diffi-
cult to map to specification.

Algorithm 3.2: VerifyEncryptedCKExponentiationProofsVerificationCardSet

Called by: –

Subalgorithm of: VerifyEncryptedCKExponentiationProofs

General comments: For tuples vs. list and variable scope see VerifyEncryptedPCCExponentiation-
ProofsVerificationCardSet.

Code comments: Code quality, see VerifyEncryptedPCCExponentiationProofsVerificationCard-
Set.

3.4.2. Final Verification

The second verification phase called final verification is conducted at the end of the
voting process. Again, the pseudocode for the top-level algorithm VerifyTally is missing,
but we include it in our summary without giving it a number.

Algorithm ???: VerifyTally

97

Called by: Auditors

Subalgorithm of: –

General comments: The pseudocode of this algorithm is missing.

Code comments: –

Algorithm 2.01: VerifyOnlineControlComponents

Called by: –

Subalgorithm of: VerifyTally

General comments: No acceptable non-ambiguous pseudo code.

Code comments: Why does the implementer know?

Algorithm 2.11: VerifyTallyControlComponent

Called by: –

Subalgorithm of: VerifyTally

General comments: See VerifyOnlineControlComponents.

Code comments: See VerifyOnlineControlComponents.

Algorithm 4.1: VerifyOnlineControlComponentsBallotBox

Called by: –

Subalgorithm of: VerifyOnlineControlComponents

General comments: The pseudo code of the specification starts to erode, as if the publisher went
out of time. This way, the implementer is left on its own, possibly not coming
to the same conclusion as the voting system.

Code comments: –

Algorithm 4.2: VerifyTallyControlComponentBallotBox

Called by: –

Subalgorithm of: VerifyTallyControlComponent

General comments: See VerifyOnlineControlComponentsBallotBox

Code comments: –

Algorithm 4.3: VerifyProcessPlaintexts

Called by: –

Subalgorithm of: VerifyTallyControlComponentBallotBox

General comments: Strange description of the requirement for N̂c “ Nc

Code comments: Stream programming instead of for-loop programming.

98

A. Addendum-1: October Release

Updates of both the specification and the code were announced on October 3 for the
components crypto-primitives and e-voting, and on October 6 for the component verifier.
In the sequel, we will refer to this new version as the October release, and to the version
that was available for our analysis in August (see release history in Figure 1) as the
August release. Given that the first draft of this document has been submitted to the
Federal Chancellery on September 15 (and forwarded to Swiss Post a few days later),
i.e., only two weeks before releasing the new version on October 1, we do not expect
many of our findings listed in Sections 2 and 3 to be addressed already in the October
release. Therefore, the purpose of this addendum section is to give an overview of the
changes made in the October release and to verify if any of the changes affects the findings
listed in the previous sections of this report. As in Section 3, we structure our analysis
according to the changes made in each of the three main system components.

A.1. Overview of Changes

Along with the updated software, the specification documents have also been updated
in the October release. The numbering of new document versions suggests that only
minor changes have been made to [CryptPrim] (updated from 1.0.0 to 1.0.1), but that
some major changes have been made to [SysSpec] and [VerSpec] (updated from 1.0.0
respectively 1.0.1 to 1.1.0). Here is the list of the current documents that we considered
in our analysis of the October release (note that [ProtSpec] and [ArchDoc] have not been
updated):

• [CryptPrim] Cryptographic Primitives of the Swiss Post Voting System – Pseudo-
code Specification, Version 1.0.1, Swiss Post Ltd., October 3, 2022

• [SysSpec] Swiss Post Voting System – System Specification, Version 1.1.0, Swiss
Post Ltd., October 3, 2022

• [VerSpec] Swiss Post Voting System – Verifier Specification, Version 1.1.0, Swiss
Post Ltd., October 3, 2022

As in earlier updates, it is inherently difficult to locate the changes made to these docu-
ments, since they are given as PDF-files. However, they all contain a revision chart with
links to change logs on gitlab.com (see remark below on code changes). Unfortunately,
some of these links do not point to the right files.

Regarding the software, moving from pre-release versions 0.15.x.x to a first major release
1.0.0.0, the October release suggests that the project has reached an important milestone,
indicating that the software has all major features and is considered reliable enough for
general release. Note that in the case of the components crypto-primitives and crypto-
primitives-domain, several minor updates have been released in August and September,
which apparently represent minor intermediate steps leading to the October release. A

99

complete overview of the latest versions released on gitlab.com are shown in Figure 8 (the
latest minor Version 1.0.0.1 and 1.0.0.2 released shortly after releasing Version 1.0.0.0
were only necessary for creating reproducible builds)

3.
10

.2
2

3.
10

.2
2

3.
10

.2
2

Date of public anouncement

3.
10

.2
2

6.
10

.2
2

Figure 8: Commit histories of the GitLab projects with dates of public announcements
of the October release.

A new feature of the current version is the inclusion of a separate file CHANGELOG.md
in all of the five GitLab code repositories for tracking corresponding changes. The infor-
mation provided in these files turned out to be very useful for getting a first overview of
the most relevant changes and as an entry point for our analysis. Some of these files also
point out corresponding changes in the specification documents listed above.

The amount of code changes since the August release is reflected by the number of source
code files (.java, .js, .ts, .json, . . .) appearing in at least one of the GitLab commits
between the August and October releases. An overview of these numbers is given in
Table 3 (changes in test files are not included). It shows that the largest number of
changes has been made to the modules secure-data-manager (backend) and voter-portal of
the e-voting component. Many files have changed also in the module domain, but these
are mostly auto-generated by JAXB (for example derived from given eCH-xxxx-x-x.xsd
files) and are marked as such. Less changes have been made to the crypto-primitives and
crypto-primitives-domain components, the modules control-components, tools, and voting-
server of the e-voting component, and the modules verifier-backend and verifier-protocol
of the verifier component. The awareness of these numbers was an important point of
orientation for getting our analysis started at the right places.

100

Maven Module .java .js .ts .json .html .xsd .xml .sql .properties

crypto-primitives 21 – – – – – – – –
crypto-primitives-domain 24 – – – – – – – –
crypto-primitives-ts – – – 2 – – – – –

command-messaging 3 – – – – – – – –
control-components 44 – – – – – – 1 –
cryptolib 6 – – – – – – – 1
cryptolib-js – 2 – 3 – – – – –
domain 227 – – – – 12 1 – 1
secure-data-manager/backend 168 – – 4 – – 2 – 1
secure-data-manager/frontend – 4 – 9 2 – 1 – –
tools 24 – – – 2 – 1 – 1
voter-portal – 95 205 83 74 – 1 – –
voting-client-js – 5 – 2 – – 1 – –
voting-server 30 5 – 2 – – – 1 2

verifier-assembly – – – – – – – – 1
verifier-backend 87 – – 1 – – – – –
verifier-frontend – – 1 4 1 – – – –
verifier-protocol 14 – – – – 12 1 – 5

Table 3: Number of files changed since the August release (without test files).

A.2. Cryptographic Primitives

The components crypto-primitives, crypto-primitives-ts, and crypto-primitives-domain have
only changed moderately since the August version. Most changes correspond to the
entries listed in the CHANGELOG.md files and can be located easily in the source files,
but there are also some minor changes that are not listed. In the following subsections,
we summarize these changes for all three components.

A.2.1. crypto-primitives

There has been several topics with corresponding changes in the code, that have been
addressed separately in one of the recent versions. Here is an overview:

• In Version 0.15.1.1, the implementation of the algorithm Argon2id has been split into
two methods genArgon2id and getArgon2id without updating the specification
document accordingly. In [CryptPrim, Version 1.0.1], this update has now been
delivered. Our second comment on Algorithm 4.14 (Argon2id) is therefore obsolete
(all other comments remain valid).

101

• The recursive hashing method in Algorithm 4.8 has been adjusted twice, first in
Version 0.15.2.3 by introducing an additional domain separator prefix <0x03> for
lists, and second in Version 0.15.2.5 by removing the limitation to non-empty lists.
In [CryptPrim, Version 1.0.1], the description of the algorithm has been updated
accordingly. Therefore, the comments in Subsection 3.2.3 about the unnecessary
exclusion of empty lists and the missing prefix for vectors become obsolete (all
other comments remain valid).

• The processing of the associated data in Algorithm 5.1 (GenCiphertextSymmetric)
and of the additional context information in Algorithm 4.12 (KDF) have been up-
dated. To ensure that the encoding becomes injective, additional single bytes rep-
resenting the length of the associated data or additional information have been
introduced. This limits the maximal length to 255 bytes, but this limitation is
correctly specified as an additional precondition in [CryptPrim, Version 1.0.1] and
implemented accordingly in Version 0.15.2.3 of the code. Our first comments in
Subsections 3.2.3 and 3.2.4 about these algorithms are therefore no longer valid (all
other comments remain valid).

• In Version 0.15.2.4, parallel stream processing has been introduced at many dif-
ferent places of the code. The unique purpose of this change is to improve the
performance of computing large numbers of modular exponentiations. It has there-
fore no impact on the security and is unrelated to the findings listed in this report.

• The definition of the security levels has been changed in [CryptPrim, Version 1.0.1]
and in Version 0.15.2.6 of the implementation. The former security level DEFAULT
(112 bits, 2028 bits modulus) is now called LEGACY, and the security level EXTENDED
(128 bits, 3072 bits modulus) is now returned as default value by the method
SecurityLevelInternal::getSystemSecurityLevel. Provided that the resulting
decrease of performance has no negative usability impact, particularly on the voting
client, we support this change.

• Minor modifications have been made to Algorithm 4.7 (GenUniqueDecimalStrings)
and Algorithm 7.3 (IsSmallPrime), but our comments in Subsections 3.2.3 and 3.2.6
remain valid.

Note that Version 1.0.0.0 (October release) contains no relevant changes other than the
updated pom.xml file and the new specification document.

A.2.2. crypto-primitives-ts

The new Version 1.0.0.0 contains no significant changes compared to the previous Ver-
sion 0.15.2.3 from July 20, 2022. The only relevant code files with modifications are
package.json and package-lock.json (see Table 3), in which nothing but the version num-
ber has been updated to 1.0.0.0.

102

All changes reported in the file CHANGELOG.md were already present in Version 0.15.2.3
from July 20 or earlier. They mainly correspond to the changes reported for the crypto-
primitives component: GenArgon2id and GetArgon2id were updated in Version 0.15.1.1
and RecursiveHash in Version 0.15.2.2. By updating the descriptions of these algorithms
in [CryptPrim, Version 1.0.1], the reported misalignment between code and specification
has been eliminated.

A.2.3. crypto-primitives-domain

Several domain classes have been updated between the August and the October releases.
From the total of 24 modified classes (see Table 3), 10 classes were only changed in the
comments. The other changes are the following:

• In the classes Ballot, CombinedCorrectnessInformation, Contest, and ElectionAttributes,
the changes are restricted to some renamed methods.

• Some domain classes have been changed or extended for various reasons. Some of
these changes are listed in the CHANGELOG.md file:

– ElectionEventContext, ElectionEventContextPayloadDeserializer, ControlCompo-
nentPublicKeys: key generation Schnorr proofs added in Version 0.15.2.12

– TallyComponentShufflePayload: refactored in Version 0.15.2.5
– SetupComponentVerificationDataPayload: slightly extended in in Version 0.15.2.13

• The most significant change is the introduction of the following domain classes for
the extended primes mapping table pTable in Version 0.15.2.8:

– PrimesMappingTable
– PrimesMappingTableEntry
– PrimesMappingTableEntryGroupVectorDeserializer

The reason for this extension is the inclusion of pTable in the exponentiation
and plaintext equality proofs generated by the voting client in Algorithm 5.2
(CreateVote) for creating a consistent view across all protocol parties (see remarks in
Appendix A.3.2). The new domain classes are needed for transferring this informa-
tion to the voting client. In VotingOptionsConstants and VerificationCardSetContext,
corresponding adjustment had to be made. We have no objections against this ex-
tension, except for the fact that pTable is an element of the voting protocol and
should therefore not appear in any of the crypto-primitives components.

Generally, the relevance of the above changes in the domain classes is very moderate for
our security analysis.

103

A.3. E-Voting

In the light of the numbers shown in Table 3, there are several areas of major code
modifications. We have already noted that the 227 modified Java files in the module
domain are auto-generated by JAXB, i.e., they are not relevant for our analysis. Oth-
erwise, the modules with the largest numbers of modified files are control-components,
secure-data-manager/backend, voter-portal, and voting-server. Some of the changes are
listed in the component’s CHANGELOG.md file, but the information given there is not
very detailed. For obtaining a more accurate overview of the changes, we considered the
GitLab commit history of the developer branch, which includes 150 commit descriptions
since Version 0.15.3.0 from July 27, 2022. Among the code areas in which we observed
major changes, we consider two of them as relevant from a security perspective. They
will be discussed in Appendices A.3.2 and A.3.3. An overview of other changes is given
in the following subsection.

A.3.1. Overview of Minor Changes

Many of the entries of the CHANGELOG.md file are minor changes, which affect only a
few source files from the e-voting component. Below we discuss the results from analyzing
these changes.

• The reported increase of the default security level from 112 bits (2048 bits modulus)
to 128 bits (3072 bits modulus) is something that has clearly an impact on the
whole system, but it affects only the code of the crypto-primitives component (see
remarks in Appendix A.2.1). The entry in the CHANGELOG.md file of the e-voting
component is therefore a bit misplaced.

• A small misalignment between code and specification has been corrected on Line 8
of Algorithm 4.8 (GenCredDat). This renders our first comment in Subsection 3.3.2
obsolete. The second entry about GenCredDat in CHANGELOG.md is misleading,
because it only announces the introduction of the memory-hard key derivation
function Argon2id, but this change was already present in the August release. On
the other hand, the important correction in the new release is not mentioned.

• A new algorithm GetElectionEventEncryptionParameters has been added to [SysSpec,
Version 1.1.0], but we were unable to locate an implementation of this algorithm in
the code (the method EncryptionParametersAndPrimesGenerator::generate is
very similar, but it includes the generation of a signature). Also, by the information
given in the specification, it is not entirely clear when and by which party this
algorithm is called. The specification states that the “setup component generates the
election event encryption parameters with the [. . .] algorithm”, but the algorithm is
not called in any of the protocol diagrams (the same remark holds for the two sub-
algorithms GetEncryptionParameters and GetSmallPrimeGroupMembers, see remarks
in Subsection 3.2.6). We also question the general usefulness of this algorithm,

104

because it is simply a composition of two existing algorithms, which could also be
called separately.11

• An implementation of Algorithm 3.2 (DecodeVotingOptions) has been added to the
code, and a call to this algorithm has been added to Algorithm 6.7 (ProcessPlaintexts).
This addresses our comments in Subsections 3.3.1 and 3.3.4. In the current version,
ProcessPlaintexts returns both the list of factorized prime numbers Lvotes and the
list a decoded voting options LdecodedVotes. According to the protocol diagram in
Figure 10, both lists are then sent to the auditors as inputs to the verifier.12 We
recommend deleting Lvotes both from the return values of ProcessPlaintexts and
from the inputs to the verifier, because the factorizations need to be computed by
the verifier in Step 6 of [VerSpec, Algorithm 4.3] (VerifyProcessPlaintexts) as part
of the verification. Sending this list as an additional input to the verifier creates
unnecessary redundancy and an additional verification step in Step 11 of [VerSpec,
Algorithm 4.3]. We also recommend sending LdecodedVotes in its pure form to the
auditors, not encoded as an XML file called “evoting-decrypt.xml”, because the
XML format should not appear in the description of the cryptographic protocol.
Note that an implementation of Algorithm 3.1 (EncodeVotingOptions) is still missing
(see remark in Subsection 3.3.1).

• The generation and verification of Schnorr proofs has been added to Algorithm 4.1
(GenKeysCCR) and Algorithm 4.7 (GenVerCardSetKeys), respectively. Correspond-
ing changes in some domain classes of the crypto-primitives-domain component have
already been commented in Appendix A.2.3. Generally, these changes are neces-
sary to avoid so-called rougue key attacks, and therefore we support this extension.
The Java code of these algorithms has been adjusted accordingly. The generation
of a Schnorr proof has also been added to Algorithm 4.10 (SetupTallyEB), but the
further processing of the additional return value πEB remains unclear. According
to Figure 7, at least, πEB is not sent to any other party. However, in Table 15 we
found an additional entry for πEB in the message “SetupComponentPublicKeys”
from the setup component to all other parties (including the auditors). In Ta-
ble 3 of [VerSpec, Version 1.1.0], this message is also listed, but its content has not
been updated. Nevertheless, Verification 1.04 (VerifyKeyGenerationSchnorrProofs)
includes corresponding proof verification steps. Therefore, it seems that the prob-
lem encountered here is an inconsistency introduced while introducing a necessary
security extension. This problem needs to be addressed by fully clarifying the im-
plemented solution. This includes explaining the purpose of sending πEB to the
online and tally control components and giving a justification of letting the un-
trusted setup component performing the proof verifications.

11We found a shell script genEncryptionParametes.sh in the folder tools, which indicates that the
encryption parameters are generated by a separate process, possibly invoked by a human administrator.
The problem with this shell script is that it refers to an outdated file config-cryptographic-parameters-
tool-0.15.3.1-SNAPSHOT.jar. Besides, the file name contains a typo (“Parametes”).

12In the protocol messages listed in [SysSpec, Table 17] and [VerSpec, Table 5], the list Lvotes is linked
to the context data p”decoded votes”, ee, bbq, but the list contains encoded votes.

105

• Issue #5 on the GitLab’s project page describes a vulnerability of the implemented
USB import/export functionality. The problem is that the insecure implementation
does not validate the files that are copied, which may allow the files in the SDM
directory to be overwritten by an attacker. An entry in the CHANGELOG.md file
states that an allow list has been implemented to restrict the copying of files from a
USB stick. Since this is not a cryptographic topic, we can only confirm that corre-
sponding changes were made to the responsible Java class OperationsController,
but we cannot confirm whether these changes are sufficient to fully mitigate this
problem.

• Issue #35 on the GitLab’s project page describes an improper sanitization of HTTP
query parameters. Corresponding changes were already made in Version 0.15.2.3
on July 26. Since this is again a non-cryptographic matter, we can confirm that
changes were made to the responsible Java class HttpRequestSanitizer, but we
cannot confirm whether these changes are sufficient to fully mitigate this problem.

• Another documented change is the introduction of an additional election output
in form of an XML document called “eCH-0110_xx.xml”. The tally control com-
ponent creates this file based on the decoded votes and sends it to the auditors.
Some additional Java classes have been introduced for this purpose, most notably
a service class called TallyComponentEch0110Service. We are not convinced that
this extension is a proper answer to our objection discussed in Subsection 3.1.3,
because the information contained in this file is highly redundant, and therefore
its purpose remains questionable. Furthermore, we believe that the XML format
should not appear in a cryptographic specification.

• Along with the introduction of parallel stream processing the crypto-primitives com-
ponent (see discussion in Appendix A.2.1), the same performance optimization has
been introduced at various places of the e-voting component. A total of 12 Java
source files are affected in the modules secure-data-manager/backend and control-
components. This modification is not documented in the project’s CHANGELOG.md
file.

• There is another undocumented change in Algorithm 5.1 (GetKey), which affects
multiple lines of pseudocode. Without giving any explanations, the exact purpose
of this change remains unclear. To the best of our understanding, it addresses the
fact that Argon2id requires a salt. In our remarks on Algorithm 4.8 (GenCredDat) in
Subsection 3.3.2 and Algorithm 5.1 (GetKey) in Subsection 3.3.3, we have discussed
the misalignment between specification and code in this matter, so the observed
change in Algorithm 5.1 seems to be the necessary patch of the specification. The
lack of clarity comes from the problem of splitting VCksid,combined correctly into
its components. This is actually a classical serialization/deserialization problem,
which could be solved more easily with the right abstractions.

The list of changes in the CHANGELOG.md file contains two additional entries related
to the eCH-0110-4-0.xsd file, but we consider them less important from the perspective

106

of the cryptographic protocol. Some other observed changes are the result of cleaning
up the code without changing it or are related to updating dependencies to third-party
libraries.

A.3.2. Redefined and Usage of pTable

In the system specification, the biggest change introduced in [SysSpec, Version 1.1.0] is
the redefinition and handling of the primes mapping table pTable and the derivation of
the final election result. We have already discussed this topic at several places. In Sub-
section 3.3.3, we recommend that a list of selected voting options should be given as input
to CreateVote, not a list of prime number encodings of the selected voting options, and in
Subsection 3.1.3, we object that the authenticity of the pTable object is not guaranteed
and that the protocol stops with the factorization of the votes instead of interpreting
them as an election result. Finally, in Subsection 1.4, we recommend removing pTable
completely from the protocol, because it contains no relevant information that otherwise
could not be determined deterministically.

Under certain circumstances, the protocol as specified in the August release allowed
an attacker to completely invert the final election result. In the updated specification
document of the October release, pTable is still present, but as stated in the project’s
CHANGELOG.md file, pTable is now included in the auxiliary input iaux of the zero-
knowledge proofs generated by the client during vote casting (see Lines 10 and 11 of
Algorithm 5.2, CreateVote). Therefore, all parties verifying these proofs using either Al-
gorithm 5.3 (VerifyBallotCCR) or Algorithm 6.4 (VerifyVotingClientProofs) from [SysSpec],
or Algorithm 4.1 (VerifyOnlineControlComponentsBallotBox) from [VerSpec], must share
the same pTable to verify the proof successfully.

In our opinion, this is generally an elegant approach to guarantee a consistent view across
all involved parties, because it delegates the consistency check to the trusted control
components and the auditors. The voting client just binds its view to the cast vote and
the trusted parties verify whether their own view corresponds to it or not. Note that
the same approach has been used already in the August release to coordinate the views
between Algorithm 4.8 (GenCredDat, called by the setup component) and Algorithm 5.1
(GetKey, called by the voting client), but there the motivation is less clear, because the
setup component is untrusted (for simplicity reasons, we recommend removing it).

Unfortunately, the implemented solution only guarantees a consistent view of the pTable
object, but it does not create a consistent view of the overall election context, which in-
cludes the correct interpretation of the voting options vi contained in pTable. Note that
the definition of pTable has slightly changed in the October release. Previously, voting op-
tions were arbitrary strings vi P A˚

UCS , but now they are limited to non-empty strings vi P

T 50
1 of maximally 50 characters from the alphabet T1 “ ta, . . . , z, A, . . . , Z, 0, . . . , 9, -, _u,

see [SysSpec, Secton 3.4.2]. Unfortunately, no further details are provided about the

107

format, properties, and interpretation of these strings. In this important matter, the
current protocol specification is completely underspecified.

In our attempt to correctly understand the meaning of the voting option strings vi P T 50
1 ,

we observed in [SysSpec, Table 15] and [VerSpec, Table 3] a new entry for a message
called “SetupComponentConfig” (with content configurationXML), which is sent by the
setup component to the tally control component and the auditors. Unfortunately, this
message is not shown in any of the protocol diagrams. To the best of our understanding,
it should be sent along with pTable. Note that in the protocol diagram in [SysSpec, Fig-
ure 7], instead of sending pTable to the tally control component, who requires pTable in
Algorithm 6.7 (ProcessPlaintexts), it is sent to the CCMs, who do no require it. Regarding
the content of the file configurationXML, the specification documents do not give further
information, except for the remark in [VerSpec, Section 3.2] stating that the file is signed
and for the additional input in [VerSpec, Algorithm 4.4] (VerifyTallyFiles). By inspecting
the provided test datasets in the verifier GitLab repository (files electionEventContext-
Payload.json and configuration-anonymized.xml), we conclude that the voting options vi
are unique identifiers and that the file configurationXML defines its interpretation for the
current election.

Assuming that our interpretation of the values vi as unique identifiers for the file con-
figurationXML elements is correct, the problem that arises from this solution is the fact
that the setup component, who signs configurationXML and sends it to the offline parties
(tally control components and auditors), is not trustworthy with regard to universal veri-
fication. Therefore, a dishonest setup component under adversarial control may possibly
send a modified configurationXML file to the online parties (CCRs, voting clients), for ex-
ample one in which the identifiers for the voting options YES and NO in two simultaneous
referendums are switched. Currently, such an attack cannot be detected by the auditors
conducting the universal verification, even if additional steps for decoding the voting
options have been added to [SysSpec, Algorithm 6.7] (ProcessPlaintexts) and [VerSpec,
Algorithm 4.3] (VerifyProcessPlaintexts).

The simplest workaround to mitigate this problem in the implemented approach discussed
above would be to include both pTable and configurationXML as auxiliary inputs iaux for
the zero-knowledge proofs, even if we generally do not recommend using XML-encoded
data as inputs to a hash function (XML encodings are not unique). This would guarantee
a consistent view of both the encoding (pTable) and its interpretation (configurationXML)
across all involved parties.

This said, we would like to emphasize that the problem discussed here seems to be even
more profound. In our 2021 report, we have already explained that several important
parameters were missing in the abstract election event model, and we have given some
recommendations for improving it (see [HKLD22b, Section 2.4.7]). Unfortunately, we
did not observe much progress in this matter, because a well-specified election context
is still missing in the current specification document (see remarks in Subsection 3.1.2).
Note that the problem described here is very closely related to the point raised in our last
year’s report, namely that a comprehensive set of election parameters, which includes all

108

relevant information about the current election event, needs to be defined as a common
starting point for all parties involved in the protocol. In CHVote, for example, the variable
EP “ pU, c,d, e, c,k,E, q fully specifies all relevant parameters of an election event,
including unique textual descriptions of the voting options [HKLD22a, Section 6.3.2]. To
impose a consistent view during a protocol execution, every message is unambiguously
linked to either the full set of parameters EP or a voter-specific subset of parameters
VPv [HKLD22a, Section 7.4]. Without defining the election context in such a clear way,
the struggle of creating a consistent view of the current election will remain. To the best
of our understanding, the parameters included in EP can be derived deterministically
from the given eCH document specifying the election event.

To complete our remarks on this topic, we recommend implementing the following minor
improvements:

• The comment “Matching order between encoded and actual voting options” in Al-
gorithm 4.3 is not necessary.

• The comment “Links the zero-knowledge proofs to the voting client’s view of the
pTable, which maps the actual to the encoded voting options.” should be removed
from Algorithm 5.2. Such clarifying explanations should be given in the regular
text.

• We found different formal definitions of pTable, first as a pair pṽ, p̃q of vectors,
and second as a vector ppv0, p̃0q, . . . , pvn´1, p̃n´1qq of pairs. Given its domain
pT 50

1 ˆ ppGq X Pqzgqn, the latter definition is the correct one. Using both nota-
tion interchangeably is abusive.

• It is confusing to have variables vi, but vectors ṽ “ pv0, . . . , vn´1q.

• Sometimes, pTable is part of the context (for example in VerifyBallotCCR), some-
times ṽ and p̃ are part of the context (for example in CreateVote), and sometimes
ṽ and p̃ are inputs (for example in GenVerDat).

Besides these remarks and recommendations, the implementation is aligned with the
specification.

A.3.3. JavaScript Client

The voter-portal component has been completely rewritten in Angular, eliminating one
of our main criticisms on the client-side (see Subsections 1.4 and 3.3.3 and [HKLD22c,
Section 2.5]). Angular Version 13 was selected, which guarantees long-time support until
May, 2023. The migration from AngularJS to Angular is not explicitly mentioned in the
CHANGELOG.md file, but it can be regarded as summarized under “Updated dependencies
and third-party libraries”. In Table 3, this migration is one of the main reasons for the
large number of changed source files.

109

As a result of this update, we evaluated the integration of the cryptographic protocol
algorithms. In our first examination, we excluded this aspect and focused solely on
the algorithms themselves, as we knew that the voter-portal will have to be rewritten
in the course of the pending migration. The top-level protocol algorithms are imple-
mented in the Maven module voting-client-js, which is also the interface between the
cryptographically relevant and non-relevant parts of the code. Note that for some algo-
rithms, voting-client-js depends on both the new crypto-primitives-ts library and the old
cryptolib-js library from the former Scytl system. The latter is mainly used for voter
authentication.

The cryptographically relevant code of the voting client, that is the voting-client-js with
all its dependencies, is entirely executed in a dedicated Web Worker environment of the
voter’s web browser, i.e., alongside with the main Angular application. This general
architecture is a good strategy for preventing unintentional interferences between differ-
ent parts of the code bases. If a web client is implemented using a framework such as
Angular, and therefore depends on numerous third-party libraries, a strict separation
of the cryptographically relevant code helps to reduce the risk of generic attacks from
contaminated or flawed third-party dependencies imported from npm. We have repeat-
edly expressed our concerns about the simplicity and impact of such attacks, for example
in Subsection 2.2.7 and in [HKLD22c, Section 2.7]. In one of the simplest attacks, the
adversary takes full control over the cryptographic randomness source with a single line
of infiltrated JavaScript code. Without isolating the execution of the cryptographically
relevant code from the rest of the system, this line of code could be injected though any
of the imported third-party libraries.

To obtain a complete picture of the cryptographic core that runs in the separate Web
Worker environment, we built the system and analyzed the resulting ov-api.min.js file.
The content of this file is exactly what is executed by the Web Worker. From building
this file, we learned that it consists of almost 100’000 lines of JavaScript code. Some
of the code lines are minified versions of complete libraries on a single line of code. To
realize that the quantity of code included in this file is enormous was quite a surprise,
because we had expected a slim cryptographic library in which every code line can be
explained and justified. In the resulting file obtained from the build process, quite the
opposite is true. Unfortunately, this turns the benefits of the selected approach with a
dedicated Web Worker to the opposite.

The file ov-api.min.js consists of several external cryptographic libraries with similar func-
tionalities. As a result, it contains multiple implementations of the same cryptographic
standard algorithms such as AES or SHA256, and it includes three different full-featured
big integer implementations jsbn13, vts14, and bn.js15. It also contains old and unsup-

13https://github.com/andyperlitch/jsbn
14https://github.com/verificatum/verificatum-vts-ba
15https://github.com/indutny/bn.js

110

https://github.com/andyperlitch/jsbn
https://github.com/verificatum/verificatum-vts-ba
https://github.com/indutny/bn.js

ported libraries, for example crypto-js16 (last updated in August 2013) or json-sans-eval17

(last updated in 2009), libraries from completely different application areas, for example
bitcoinjs-lib18, and different versions of the same library, for example bn.js@4.12.0 and
bn.js@5.2.1. Figure 9 gives an overview of the general dependency structure of the whole
voting-client-js component.

We have repeatedly recommended to reduce the amount of third-party libraries, for
example in [HKLD22c, Section 2.5], so we were quite surprised to see that the situation
has not improved much in the meantime, not even in one of the most security-critical
components of the system. This gives a poor overall impression and still makes the voting
client highly vulnerable to generic attacks through third-party dependencies.

voting-client-js (8/59)
core-js
crypto-browserify (11/38) ñ added by the build system
cryptolib-js (2/2)

node-forge
sjcl

crypto-primitives-ts (3/3)
hash-wasm
jssha
vts

jsrsasign (4/23)
jsbn
cryptojs
bitcoinjs-lib (8/19)
json-sans-eval

lodash
q
xhr2

Figure 9: Dependencies of the voting-client-js component. The first number given
in parentheses indicates the number of direct dependencies, and the sec-
ond the total number of dependencies (without development dependencies).
We computed these numbers using the CLI command “npx npm-remote-ls
--development=false <library>”.

An interesting technical aspect, which we observed while inspecting the updated crypto-
primtives-ts library, is the fact that the window object is accessed at the most critical
place (while generating random bytes, see Figure 10). However, the window object does
not exist inside a Web Worker environment. Only thanks to the build system, the

16https://code.google.com/archive/p/crypto-js
17https://code.google.com/archive/p/json-sans-eval/
18https://github.com/bitcoinjs/bitcoinjs-lib

111

https://code.google.com/archive/p/crypto-js
https://code.google.com/archive/p/json-sans-eval/
https://github.com/bitcoinjs/bitcoinjs-lib

Figure 10: Accessing the window object in secure_random_generator.ts.

NodeJS fallback works also in the browser context, because it resolves the dependency
and includes the module crypto-browserify19 (and thus adds a large number of unnecessary
additional dependencies into the built library). This gives the impression, that not
even the developers at Swiss Post are fully aware of what is really going on inside the
cryptographic core of the voting client.

A.4. Verifier

Many changes in the updated verifier component reflect the changes of the October release
discussed for the e-voting component. Our analysis in Appendix A.3 already contains
several references to both the verifier specification and the source code. The following
list summarized corresponding topics of conducted modifications (they are all listed in
the project’s CHANGELOG.md file):

• A new list LdecodedVotes of decoded votes generated by the tally component is given
as additional input to the verifier. It is sent to the verifier in a message file
called tallyComponentVotesPayload.json. This list is unwrapped in Verification 2.11
(VerifyTallyControlComponent) and its consistency is checked in Line 11 of Algo-
rithm 4.3 (VerifyProcessPlaintexts). The implementation has been adjusted accord-
ingly.

• Introducing Schnorr proofs to Algorithms 4.1 and 4.7 creates an additional com-
ponent to the message “SetupComponentPublicKeys” sent from the setup compo-

19https://www.npmjs.com/package/crypto-browserify

112

https://www.npmjs.com/package/crypto-browserify

nent to the auditors and requires additional verification steps in Verification 1.04
(VerifyKeyGenerationSchnorrProofs). The implementation has been adjusted accord-
ingly.

• The inclusion of pTable as an additional auxiliary input to some zero-knowledge
proofs requires the adjustment of corresponding verification algorithms. Further-
more, pTable needs to be sent to the auditors to allow them performing the veri-
fications in Algorithm 4.1 (VerifyOnlineControlComponentsBallotBox). The message
“SetupComponentPublicKeys” has been extended for that purpose.

• Due to the general migration from 112 to 128 bits security of security, an additional
Require statements has been added to Verification 1.01 (VerifyEncryptionParameters).
This seems to be correct, but it disables elections executed in esting-only or legacy
mode (for example for testing purposes) from being verified correctly. We are not
sure if this is intended.

The file CHANGELOG.md also mentions the inclusion of some additional consistency
checks for the general verification procedure VerifyTally and an improved input val-
idation for Algorithm 3.1 (VerifyEncryptedPCCExponentiationProofsVerificationCardSet),
but without further specifying which ones. We observed, that a new Algorithm 4.4
(VerifyTallyFiles) has been introduced for checking the consistency of the output XML
files “evoting-decrypt.xml” and “eCH-0110_xx.xml”. It is called by Verification 2.11
(VerifyTallyControlComponent). We assume that this is what is meant with the “inclusion
of some additional consistency checks” in the CHANGELOG.md file. A few other changes
are listed, for example the migration of JKS keystores to standard PKCS12 keystores,
the updating of the dependencies to third-party libraries, or the fixing of the incorrect
ordering when reading files from the file system, but we consider them less important for
our analysis.

To describe the outcome of our analysis of the verifier component more systematically, we
add two more subsections with further details on some findings relative to the updated
specification document and source code. Independently of our remarks on the technical
details, our general impression that many aspects of the verifier are still not sufficiently
well specified remains, and also that the specification still seems to lag behind the imple-
mentation. A thorough and systematic alignment analysis is therefore still not possible,
because simply too much room for interpretation and ambiguities exist in the current
specification.

A.4.1. Verifier Specification

To illustrate the above-mentioned lack of preciseness and disambiguation in the verifier
specification, we provide the following list to summarize all the statements included in
the pseudocode algorithms that are given in textual form:

• Verification 1.21: VerifyEncryptedPCCExponentiationProofs

113

– Line 3: Context and Input for verification card set vcsi and control component j

• Verification 1.22: VerifyEncryptedCKExponentiationProofs

– Line 3: Context and Input for verification card set vcsi and control component j

• Verification 2.01: VerifyOnlineControlComponents

– Line 2: Extract the key-value map of the verification card public keys KMap
from the Setup Component Tally Data

– Line 3: Prepare the Context including the election event context

– Line 4: Prepare the Input containing KMap, the first control component’s bal-
lot box, and the online control component shuffles

– Line 5: Context and Input for ballot box bbi

• Algorithm 4.1: VerifyOnlineControlComponentsBallotBox

Line 1: Extract the key-value map of verification card IDs to encrypted, confirmed
votes from the first Control Component Ballot Box vcMap1

• Verification 2.11: VerifyTallyControlComponent

– Line 2: Prepare the Context containing the parameters from the election event
context including the primes mapping table pTable

– Line 3: Extract the partially decrypted votes cdec,4 from the last control com-
ponent’s shuffle

– Line 4: Extract pcmix,5, πmix,5,m, πdec,5q from the Tally control component shuffle

– Line 5: Extract the list of selected encoded voting options Lvotes and selected
actual voting options LdecodedVotes from the Tally control component votes

– Line 7: Context and Input for ballot box bbi
– Line 9: Context and input as specified

• Algorithm 4.4: VerifyTallyFiles

– Line 1: Aggregate the decoded voting options from all ballot boxes

– Line 2: Count how many votes each voting option received, in the format defined
under http://www.ech.ch/xmlns/eCH-0110/4/eCH-0110-4-0.xsd.

Given these excerpts from the pseudocode, it is clear that this is not sufficient for re-
viewers of the given verifier implementation or for developers of an independent verifier.
Possibly the most extreme case is the new Algorithm 4.4 (VerifyTallyFiles), which in its
current form leaves all the necessary details open. By introducing further underspecified
algorithms, the problem discussed in Subsection 3.4 has been worsened.

The related lack of accuracy concerning the completeness, authenticity, consistency, and
integrity checks of the verifier’s input data has been accentuated by introducing three
additional inputs in XML format: “configuration XML”, “evoting decrypt XML”, and “eCH
0110 XML”. The specification contains references to corresponding XML schema docu-
ments (.xsd files), which can be used to validate the given files, but otherwise the content

114

and purpose of these documents remains largely unspecified.20 Furthermore, as explained
in [VerSpec, Sections 3.2 and 4.2], all three XML files are signed by either the setup com-
ponent or the tally control component, but for the signature generation and verification,
only a high-level description is given at the end of [VerSpec, Sections 3.2]. Generally, we
do not recommend using the XML format in a cryptographic specification document.

To conclude this section, we provide a list of unrelated observations made during our
analysis of the updated verifier specification:

• pTable has been moved from the “SetupComponentTallyData” to the “SetupCompo-
nentPublicKeys” message, but the reason for this remains unclear (both messages
are sent at the same time).

• The leading text for Verification 1.04 contains a word repetition: “that that”.

• In [VerSpec, Section 4.5], the list of evidence checks includes an additional entry
“Verify the Tally control component’s generation of the tally files”, but the exact
checks of this verification step remain unclear.

• In Algorithm 4.1 (VerifyOnlineControlComponentsBallotBox), the pTable is included
in the election event context. However, it seems as if nothing is really done with it.

A.4.2. Verifier Implementation

As already discussed in the previous subsection, performing a systematic code analysis
is much more difficult in the case of an inexact specification document that leaves too
much room for interpretation. Compared to the of other component of the system,
our code analysis of the verifier component has therefore been less accurate and not as
comprehensive. The following list summarizes some general observations and provides
feedback on certain specific points:

• With regard to the general topics discussed in the beginning of this section, we can
confirm that corresponding code areas have been updated properly.

• In the tools section of the verifier-backend module, two new mapper classes called
ContestResultsMapper and DeliveryMapper have been added in the new version.
They both provide an impressive amount of mappings for verification. Unfortu-
nately, the purpose of these classes is not very well documented, so they are only
comprehensible when reading their code and the document structures they rely on.
Here, we would hope the get some more clarifications from the specification.

20The XML schema “eCH 0110-4-0.xsd” from 2018 is referenced, but a new version “CH-0110-4-1.xsd”
(see https://www.ech.ch/de/ech/ech-0110/4.1) is available since 2020. The implication of using the
older version lies beyond our expertise and is noted as an informative fact.

115

https://www.ech.ch/de/ech/ech-0110/4.1

• The updated implementation contains six different HashableEchxxxxFactory.java
interfaces. Since a description of the eCH standards is explicitly excluded from
the verification specification, we cannot independently audit their correctness and
integrity without obtaining more information about this aspect. Again, we would
hope to find such information somewhere in the specification.

• There is a new consistency check that verifies the correct naming of files. The class
responsible for this check is called VerifySetupFileNamesConsistency. However,
its purpose remains unclear, because it seems to be a very implementation-specific
internal check. Unfortunately, no information is provided in the underlying speci-
fication.

• The internationalization of the resources has started. We found corresponding files
for German, English, French, and Italian:

– resources_de.properties,
– resources_en.properties,
– resources_fr.properties,
– resources_it.properties.

However, many dialogues are still only available in English.

116

B. Addendum-2: November and December Releases

During our analysis of the October release, major updates of both the specification
documents and the code were announced on November 4, 2022. On gitlab.com, the
updates were already available one week earlier, on October 27 (code) and October 31
(documents), respectively. In the sequel, we will refer to this version as the November
release. Many of the changes made in the November release address the issues listed in
Sections 2 and 3 of this report. As already mentioned, a draft of this report was given to
the Swiss Post in the second half of September, which means that the period for making
these changes was approximately five weeks.

Together with the November release, we received an updated project roadmap with an
announcement of the subsequent release for early December. On December 9, 2022,
the December release was published on the project’s web site on gitlab.com. It includes
new versions of all specification documents and code repositories. Since we received
these updates at an early stage of evaluating the November release, we have agreed with
the Federal Chancellery to analyze the November and December releases together in a
single evaluation round. The results of our evaluation are described in the following
subsections.

B.1. Overview of Changes

The following list gives an overview of all documents updated in the December release
on December 9, 2022. These are the documents that we considered for the final version
of this report:

• [CryptPrim] Cryptographic Primitives of the Swiss Post Voting System – Pseudo-
code Specification, Version 1.2.0, Swiss Post Ltd., December 9, 2022

• [SysSpec] Swiss Post Voting System – System Specification, Version 1.2.0, Swiss
Post Ltd., December 9, 2022

• [VerSpec] Swiss Post Voting System – Verifier Specification, Version 1.3.0, Swiss
Post Ltd., December 9, 2022

• [ProtSpec] Protocol of the Swiss Post Voting System – Computational Proof of
Complete Verifiability and Privacy, Version 1.1.0, Swiss Post Ltd., December 9,
2022

• [ArchDoc] E-Voting Architecture Document, Version 1.2.0, Swiss Post Ltd., Decem-
ber 9, 2022

As in earlier updates, it was inherently difficult to locate the changes made to these
documents, since they are given as PDF-files. However, similar to the October release,
they all contain a revision chart with links to the change logs on gitlab.com. Additionally,
we received special versions of [CryptPrim], [SysSpec], [ProtSpec], and [ProtSpec], which

117

highlight the changes made to these documents since the October version (to the best of
our knowledge, these documents are not publicly available). While these documents were
very useful for tracking the changes in the November release, we received them for the
December release only on December 23. At that time, we had already manually tracked
the changes in most parts of the documents.

Regarding the software, the first major release 1.0.0.0 from October was updated to
1.1.0.0 in November and to 1.2.0.0 in December (with a few minor internal releases
1.1.0.x in between). A complete overview of the latest versions released on gitlab.com
is shown in Figure 11. Note that the version numbering of the verifier is still slightly
different (the October release 1.1.0.0 has been updated to 1.2.0.0 in November and to
1.3.0.0 in December). On December 23, we were notified that a “patch 1.2.1.0 of the
e-voting system” and a “patch 1.3.1.0 of the verifier ” had been released on December 22,
but that “the patch [. . .] does not include any changes that affect the implementation
of the cryptographic protocol ”. Given the time constraints at such a late stage of our
assessment, we were unable to look at the latest update and to verify the above claim
(we only observed that 64 files were changed in the e-voting system and 11 files in the
verifier). Our analysis is therefore restricted the versions released on December 8.

4.
11

.2
2

9.
12

.2
2

Date of public anouncement

4.
11

.2
2

9.
12

.2
2

4.
11

.2
2

9.
12

.2
2

4.
11

.2
2

9.
12

.2
2

4.
11

.2
2

9.
12

.2
2

Figure 11: Commit histories of the GitLab projects with dates of public announcements of
the November and December releases. It does not include the latest “patches”
from December 22.

The amount of code changes since the October release is reflected by the number of
source code files appearing in at least one of the GitLab commits from Figure 11. An
overview of these numbers is given in Table 4 (changes in test files are ignored). We
evaluated these numbers again to obtain a rough overview of the code changes and as
a point of orientation for getting our analysis started at the right places. Generally,
the large number of modified files seems to indicate that the state of the project is still

118

relatively unstable.

Maven Module .java .js .ts .json .html .xsd .xml .sql .properties

crypto-primitives 61 – – – – – – – –
crypto-primitives-domain 26 – – – – – – – –
crypto-primitives-ts – – 13 2 – – – – –

command-messaging 2 – – – – – – – –
control-components 51 – – – – – – 1 1
cryptolib 12 – – – – – – – –
cryptolib-js – – – 2 – – – – –
domain 228 – – – – 1 1 – –
secure-data-manager/backend 139 – – 1 – 1 1 – 4
secure-data-manager/frontend – 9 – 10 6 – 1 – –
tools 4 – – – – – – – –
voter-portal – 1 53 9 34 – – – –
voting-client-js – 14 – 2 – – – – –
voting-server 65 – – – – – – 1 1

verifier-assembly – – – – – – 2 – –
verifier-backend 97 – – 1 – – 2 – 1
verifier-frontend – 1 2 4 1 – – – –
verifier-protocol 23 – – – – – – – –

Table 4: Number of files changed since the October release (without test files).

Compared to Table 3 in Appendix A for the October release, the picture in Table 4 is very
similar. It shows that the largest number of changes have been made again to the modules
secure-data-manager (backend), voter-portal, and domain of the e-voting component (as in
the October release, the changes in the module domain are mostly auto-generated by
JAXB and marked as such). Note that an increased amount of changes has been made
to the crypto-primitives component. This is mainly a consequence of the improvements
made in response to our findings listed in Subsection 3.2.

In the remaining of this addendum section, we summarize the findings of our last eval-
uation round. As in Section 3 and Appendix A, we structure our analysis according to
the changes made in each of the three main system components. In Appendix B.5, we
recapitulate the major conclusions of our assessment from a big picture’s perspective.

B.2. Cryptographic Primitives

Since the beginning of our assessment, the modules crypto-primitives, crypto-primitives-ts,
and crypto-primitives-domain have been the most stable components of the whole system.

119

The correspondence between documentation and code was already relatively high when
we first looked at it in June, 2022. However, in our thorough analysis of all algorithms
and their implementations in Java and TypeScript, we encountered numerous issues to
improve and provided a long list of recommendations. In the updates that we received
with the November and December releases, we observed that many of the issues and
recommendations from Subsection 3.2 have been addressed, especially those related to
deviations between the pseudocode and Java-code algorithms. To provide an overview of
the improvements, we systematically inserted comments of the form [updated in November
release] or [updated in December release] whenever possible. Given these improvements,
the alignment between documentation and code has been further increased for the crypto-
primitives component.

This said, we also observed that many of our findings and recommendations have not
been considered. From the general problems discussed in Subsection 3.2.1, for example,
most of the listed items have not been addressed at all. The same holds for most of the
simplifications proposed in Subsection 1.4 (one exception is the removal of the algorithm
IsProbablePrime and its sub-algorithms from [CryptPrim] in the November release). This
is very unfortunate, because it means that the evident large potential for improving the
code quality has not been fully exploited. We assume that within the given tight time
constraints of the project roadmap, simplifications and code quality issues were not given
the highest priority. However, we hope that our recommendations will be considered at
a later stage of the product’s life cycle.

We also observed that the minor algorithmic issues listed in Subsection 3.2.2 to 3.2.8 have
not been addressed in a very systematic manner. For example, at several places in the
pseudocode algorithms, we detected abusive notations like h}v instead of xhy}v in Line 3
of Algorithm 4.9 or v Ð v Y gi instead of v Ð v Y tgiu in Line 9 of Algorithm 8.6. We
made corresponding remarks in the tables of Subsections 3.2.3 and 3.2.7, respectively, but
while the problem in Algorithm 8.6 has been addressed in the December release, it still
persists in Algorithm 4.9. We agree that these are mostly tiny problems, but we would
have expected a more thorough and comprehensive consideration of our findings.

To conclude the point raised in the previous paragraph, we must note that on November
22 and on December 22, 2022, we received from Swiss Post two response documents
addressed directly to us, in which they justify their decision not to address some of
our findings. These documents contain justifications like “we analyzed your suggestion
but prefer to keep the current approach”, “we consider this a stylistic preference”, or
“our position is that we consider [. . .] a cryptographic bad practice”. Clearly, subjective
statements like this are not very persuasive in all cases. In a few cases, we would have
liked to express our objection, but given the tight time constraints of our assessment, we
decided to just leave our discussion in Subsection 3.2 untouched, by which we express
our opinion that the problems still persist in the current version.

120

B.3. E-Voting

Like in the October release, the largest number of changes has been made to the E-voting
component. Changes have been made to both the documentation and the code. As
one can see in Table 4, almost all Maven sub-modules are affected by the code changes.
Generally, we did not expect to encounter several new features and discussions of new
aspects at this late stage of the development process, where one would expect that most
efforts are put into stabilizing the implementation, improving its quality, and finalizing
the code base. The same happened already in the October release, where a completely
new voting client was added to the code base. Again, this does not give the impression of
a stable and robust system that will soon reach the status of a market-ready product. We
understand that the whole system is very complex and its development requires enormous
efforts, but we don’t think that numerous last-minute changes under time pressure are
the right answer for achieving the security and code quality goals.

Some of the security-relevant enhancements that have been made to the specification doc-
ument [SysSpec] and the code are the following (from either the November or December
releases):

• A new Section 1.5 on “Context, State, and Input Variables” has been added to the
introductory section, and a new message ElectionEventContext has been added to
the overview of the messages and signatures in Table 15 of Section 7.

• A new Section 3.6 about “Write-Ins” with six new Algorithms 3.7 to 3.12 has been
added to the preliminaries section. Corresponding Java methods and JavaScript
functions have been added to the modules secure-data-manager (backend) and voting-
client-js, respectively.

• Additional information and explanations about the authentication protocol have
been added to Section 5.1 (before Section 5.1.1).

• Additional information about handling votes submitted over conventional channels
has been added to Section 5.2.4. This important aspect has not been discussed in
earlier releases.

• A new Section 6.2.6 on “Requesting a Proof of Non-Participation” with a new
Algorithm 6.8 has been added to the description of the tally phase (but not to the
code base).

• A new Section 6.2.7 on “Handling Inconsistent Views of Confirmed Votes” with
two new Algorithms 6.9 and 6.10 has been added to the description of the tally
phase (but not to the code base).

• A new protocol party “Canton” has been added (silently) to the overview of the
messages and signatures in Table 15 of Section 7. Similarly, a new trustworthy
protocol party “Dispute Resolver ” has been introduced in the new Section 6.2.7.

121

• As announced in the CHANGELOG.md file of the December release, new sub-folders
security/windows and security/linux with corresponding java.security prop-
erties files have been added to the main project repository.

Many of the enhancements in the above list are not very well specified and explained. As
such, they do not contribute much to the clarification of corresponding topics. We will
discuss some of the topics in the following subsections and describe our observations and
conclusions from our second assessment round. We also looked at all the minor changes
made to the algorithms and inserted in Subsection 3.3 comments of the form [updated in
November release] or [updated in December release] whenever possible.

B.3.1. Context, State, and Input Variables

As a response to our remarks about the context variables in Subsection 3.1.2 and our
comments on immutability in Subsections 1.4, 2.2.5, 3.2.9 and 3.3, the discussion in the
new Section 1.5 provides some additional, but mostly vague explanations about the design
concept of this important topic. Our main point in Subsection 3.1.2 is the missing formal
definition of the context in any of the available specification documents. We illustrated
the problem by giving a comprehensive list of context variables that appear in at least
one algorithm. This list demonstrates the complexity of the topic and reveals numerous
problematical and inconsistent cases in the current implementation. We recommended
introducing a more consistent concept, that can be applied systematically to both the
documentation and the code. Given the vagueness of the explanations given in the new
Section 1.5, our recommendation has not been implemented and the situation has not
been improved.

A particular aspect that we discussed in Subsection 3.1.2 is the existence of side-effects in
some of the given algorithms. By saying in Section 1.5 that the context may also contain
stateful lists and maps, our remark has been taken into account in the documentation,
but our concerns about this design decision have not been considered (we explicitly
recommended to “exclude data structures such as lists or maps from any context to ensure
that all algorithms are free from side-effects”). Therefore, there are still many algorithms
that produce a side-effect over the context variables, and some algorithms even directly
access the database (read and write). As already discussed, side-effects always create an
additional complexity layer that makes the examination and testing of such algorithms
much more difficult. This is why they should be avoided whenever possible in complex
systems as a measure to optimize their code quality and robustness.

Another weak point of the discussion in Section 1.5 is the distinction between variables
that are invariant and variables that are different for each invocation. Generally, we
consider it good design strategy to make such a distinction, but only if it is defined
and implemented in a rigorous and consistent manner, both in the specification and the
code. Unfortunately, this is still not the case in the current release. For example in
Algorithm 6.7, p̃ is defined as a context variable (as part of pTable), but at the same

122

time, p̃w (a sub-vector of p̃) is defined as an input variable. In this particular case, the
inconsistent implementation of this idea is obvious (we mention it, because p̃w has been
introduced as an additional input variable in the November release), but as already noted
in Subsection 3.1.2, there are many other similar examples, for example variables that
are sometimes inputs and sometimes context.

B.3.2. Write-Ins

The support for write-ins has a long history in the Swiss Post e-voting system. In our 2021
report, we criticized the half-hearted inclusion of this topic in both the documentation
and the code. In the August and October releases that we received for the current
evaluation, write-ins were no longer included as a feature of the system, but they were
not eliminated entirely. From a technical perspective, the most important precondition
for including write-ins are multi-recipient ElGamal encryptions [CryptPrim, Section 7],
which can be used to attach write-ins efficiently to regular votes. Since the topic of multi-
recipient ElGamal encryptions could have been dropped without write-ins, we proposed
in Subsection 1.4 their removal as a potential simplification. However, we knew from
[ResScope1, Section 4.3] that dropping write-ins was never an option.

In the November release, write-ins have been reintroduced with a new Section 3.6 in
[SysSpec], six additional Algorithms 3.7 to 3.12, and two enhanced Algorithms 5.2 and
6.7. We evaluated this new section, the new and enhanced algorithms, and their imple-
mentations. Here are some observations from our analysis:

• The purpose of the separator symbol # at index (rank) 0 of the alphabet is unclear.
Why should a string with the name of a write-in candidate contain such a symbol?
And what if a malicious voting client uses this symbol as prefix on purpose?

• In Line 1 of Algorithm 3.9, there are two possible outcomes for x Ð
?
y mod p, one

in Gq and not it Gq (or equivalently, one smaller than q, and one between q and
p ´ 1). The pseudocode algorithm must specify which one is taken. In the imple-
mentation of the algorithm in the class QuadraticResidueToWriteInAlgorithm,
we observed that the sqaure root smaller than q is selected, which is the correct
choice. However, documentation and code are not aligned. [updated in December
release]

• In the Algorithms 3.9 to 3.12, the context is missing for no obvious reason. This
looks like if checking the domains of the input variables has been dropped for
sub-algorithms (which is something we proposed as a potential simplification in
Subsection 3.2.1), but then this is inconsistent with the implementation of all other
sub-algorithms.

• Empty strings for write-ins are excluded for no obvious reason. How is an empty
string different from one that contains nothing but spaces? Explanations are miss-
ing to justify this choice.

123

• The notation for the input x P Zq R t1u in Algorithm 3.10 is abusive, it should
x P Zqzt1u. Similarly, the expression ŝ Ð pŝ, ŝkq in Line 6 in Algorithm 3.12 is
slightly abusive. The same abusive notation is used in Lines 12–14 of Algorithm 6.7.

• In the example given in Subsection 3.6.4, only two out of three possible write-ins
have been selected. For the third one, wid,2 “ 1 is selected as a default encoding,
but this corresponds to the encoding of a string "␣" consisting of a single space
with rank 1 in the alphabet. It is unclear if this is intentional or not, and if not, if
this can cause a problem.

• According to Figure 8, it is clear that the voting client performs CreateVote (Al-
gorithms 5.2) with input values obtained from the voter, in particular the vectors
p̂id (encoded votes) and wid (encoded write-ins). Here, corresponding calls of the
encoding algorithms are missing, particularly a call to WriteInToQuadraticResidue
(Algorithm 3.7) for every element of wid. The current document gives the impres-
sion that WriteInToQuadraticResidue is never called (respecively that the human
voter executes WriteInToQuadraticResidue, which is absurd).

• In ProcessPlaintexts (Algorithm 6.7), a new input p̃w (write-in voting options) has
been introduced, but no definition or explanations are given. We conclude from
Algorithm 3.11 that the purpose of p̃w is to define the subset of the prime number
encodings in pw that correspond to write-ins. But then it is something that defines
the current election and therefore should be part of the election context (for example
as part of pTable). Given its importance for obtaining the correct final result, the
specification must be clarified. Note that the requirement δ̂ ď l is in conflict with
the requirement of DecodeWriteIns (Algorithm 3.12), which expects the first and
the third argument to be equally long, i.e., the requirement should be δ̂ “ l.

• According to ProcessPlaintexts (Algorithm 6.7), all write-ins are decrypted, includ-
ing the empty ones. This means that the unused write-in fields in a vote for regular
candidates offer the possibility for a malicious voting client to mark the ballot, and
that such marks become visible after the decryption. We discussed this problem
already in our 2021 report on Scope 1 [HKLD22b, Section 2.4.8].

• Another problem with the write-ins occur in cases where multiple write-in elections
are held jointly in a single protocol run. In such a case, it looks like assigning
the write-ins in the vector wk to the right question may not always be unique in
the current implementation where p̃w is the only additional election parameter.
Possibly, the problem can be solved by defining a unique ordering, but such an
ordering is currently not specified.

In the light of these remarks, we do not think that the write-ins topic has been treated
and implementation with the necessary care. Generally, we believe that such a com-
plex and security-critical topic should not be introduced as a new feature shortly before
reaching an important milestone in the project roadmap. On the other hand, we couldn’t
find any weaknesses in the write-ins implementation that could interfere with the base
protocol in an election without write-ins. In such cases, where δ̂ “ 1 limits the size of

124

the public multi-recipient ElGamal key to 1 and the length of corresponding ElGamal
ciphertext tuples to 2, everything degenerates into a protocol run without write-ins, i.e.,
with an empty input vector wid “ pq in CreateVote, an empty input vector p̃w “ pq in
ProcessPlaintexts, and empty output list LwriteIns “ xy in ProcessPlaintexts. Therefore, at
least for elections without write-ins, it seems that extended system provides the same
security.

B.3.3. Voter Authentication

In our 2021 report, we already noted that the transmission of the verification card key-
store VCksid from the voting server to the voting client was not properly specified. In
Figure 8 of the current version, this is unfortunately still the case. The following state-
ment from [SysSpec, Section 5.1] expresses this problem explicitly:

“We omit the voter’s authentication to the voting server to retrieve the Veri-
fication Card Keystore VCksid and we assume that the voting client authen-
ticates to the voting server prior to the SendVote phase.”

This statement is still present in the December release, but some additional explanations
about the authentication process are now given in Section 5.1:

“The authentication protocol requires the voter to enter the correct Start Vot-
ing Key SVKid and, optionally, an additional authentication factor such as
the date of birth.”

Unfortunately, this explanation does not precisely define the authentication process.
Even worse, it raises several questions, because it looks as if the start voting key SVKid,
entered by the voter, is submitted to the untrusted voting server. We took the lack of
information as a starting point to investigate this aspect more profoundly in the im-
plementations of the voting client and voting server. Our expectation was to find, for
example, that a hash value hashpSVKidq of the start voting key is submitted to the voting
server as a key for selecting the right VCksid from a map. However, we learned that the
implementation does something much more complicated, which is even in contradiction
with the recently added statement quoted above. Here is a direct comparison between
the specification and our findings about the implementation:

Specification

• The start voting key SVKid is generated by the setup component and passed
to the printer.

• The printer prints SVKid and the voter receives SVKid on paper.

• The voter enters SVKid to start the voting process.

125

• Upon receiving the keystore VCksid from the web server, the voting client
opens VCksid using SVKid.

Implementation

• The authentication key is generated by the setup component using one of the
two classes (depending on the entry for auth.generator.type in the property
file resources/application-standard.properties):

– SimpleAuthenticationKeyGenerator (uses SVKid as authentication key),

– SingleSecretAuthenticationKeyGenerator (generates a new authenti-
cation key by selecting 24 random characters from an alphabet of size 32,
which corresponds to a total of 120 random bits).

• The printer prints the authentication key and the voter receives it on paper.

• The voter enters the initialization code (synonym for authentication key).

• The voting client derives an authentication ID and a symmetric encryption
key from the initialization code (see JavaScript code in authenticate.js):

authenticationId “ PBKDFpinitializationCode, ”authid” ` eeIdq,

symmetricKey “ PBKDFpinitializationCode, ”authpassword” ` eeIdq.

• The voting client sends authenticationId to the web server, which responds
with an encrypted start voting key SVKid and the keystore VCksid.

• The voting client uses symmetricKey to decrypt the encrypted start voting
key.

• The voting client opens VCksid using SVKid.

In the light of this direct comparison, we have several important remarks. First, it
is obvious that the implemented authentication method is completely underspecified.
It includes several cryptographic elements (authentication key, initialization code, au-
thentication ID), which are not even mentioned in the specification. The length of the
authentication key, for example, is a very critical security parameter, which cannot be
left unspecified. What is also completely unclear is the selection of the key generator
class, and, more generally, the question why there are two such classes.

Second, it is difficult to understand the benefits of this complicated implementation.
Given the specification, the only open question is the selection of the right keystore by
the voting server. In principle, since the keystores are encrypted, the voting server could
send all keystores to the voting client, and the selection is performed locally in a trial-
and-error procedure. However, for efficiency reasons, it would be better for the voting
client to simply send an identifier for the keystore to the voting server, for example the
hash value of the start voting key, another (shorter) unique id such as the index of the

126

keystore in the list of keystores, or the verification card ID vcid. Clearly, the currently
implemented solution is unnecessarily complicated for no obvious benefit.

In the following list, we summarize some additional remarks about the implementation
of the authentication process:

• The specification gives the impression that all key derivations are computed using
Argon2. But in the implemented procedure, PBKDF2 is used (see authenticate.js).

• The PBKDF2 parameters do not depend on the security level.

• For computing authenticationId and symmetricKey , the same PBKDF2 salt is used
for all voters of a given election.

• The implementation of the authentication procedure is even more complicated than
described above. It includes additional confusing steps with tokens, client/server
challenge messages, signatures, and certificates. Given the time constraint for our
assessments, we were unable to conduct a full analysis of these steps.

To conclude the discussion of this topic, we recommend to entirely remove the current
implementation and to work out a new solution from scratch based on a clear and well
documented concept.

B.3.4. Hybrid Elections with Conventional Voting Channels

In the discussion added to Section 5.2.4, an entirely new aspect has been introduced.
The problem comes from the fact that multiple voting channels are offered to the voters
in Switzerland simultaneously. This creates a synchronization problem across multiple
voting channels, which must be solved carefully such that voters cannot submit votes
over multiple channels. In [HDKL18, Section 3], this problem has been analyzed and
possible extensions of the election and verification processes have been proposed. The
discussed subtleties in [HDKL18] demonstrate the difficulty of this problem.

According to the new explanations given in Section 5.2.4, the so-called voting card status
is managed by the untrusted voting server. As soon as a voter submits and confirms a
ballot electronically, or whenever a paper ballot is registered at the cantonal or communal
election office, the voting card status is updated. Unfortunately, the possible values for
the voting card status are not further specified, but we assume it will be one of the
following four states: not-voted (initial state), voted-electronically (terminal state), voted-
by-mail (terminal state), and voted-in-person (terminal state). The idea then is to block
the submission of a ballot, if the status is already in a terminal state.

Under the premise that our understanding of this topic is correct, we see a number
of critical problems. The first comes from the responsibility given to the untrusted
voting server to manage the voting card status. This implies that by changing the status
maliciously, the voting server can block voters arbitrarily in all voting channels. The
problem is that such malicious changes cannot be detected, or more generally, that the

127

correctness of the voting card status cannot be publicly verified. Furthermore, if the
cantonal or communal election offices can invoke a status change at the voting server,
then a strong authentication mechanism is required to prevent an attacker from invoking
such changes maliciously. However, such an authentication mechanism is not specified.
Finally, we are concerned that synchronization problems may occur if a large number
of ballots are cast at more or less the same time, which could then lead to unintended
duplicate votes. We cannot describe such a scenario precisely, but they are typical for
asynchronous processes.

We assume that a discussion of this topic has been added to Section 5.2.4 mainly to
comply with the following requirements from [OEV, No. 4.11] and [OEV, No. 11.6], re-
spectively (both requirements and corresponding notes from [ExpRep] are quoted in
Section 5.2.4):

“As long as the system has not registered confirmation of a definitive electronic
vote, the voter may still choose to cast his or her vote via a conventional voting
channel.”

“The system allows the polling card to be used to determine whether someone
has cast an electronic vote.”

However, from these statements we do not conclude that this functionality should be
implemented by the untrusted voting server, even if a note in [ExpRep] says that it
is not necessary to specify this functionality under the same trust assumptions as for
complete verifiability.

B.3.5. Proof of Non-Participation and Handling Inconsistent Views

After an election, abstaining voters must have the possibility to check no vote has been
cast on their behalf. In [HKLD22b, Section 2.3], we have already discussed this topic. We
suggested a solid solution based on vote abstention codes, but our recommendation has
not been implemented. The current solution described in the new Section 6.2.6 is simpler,
but it requires stronger trust assumptions. The idea is that a trustworthy cantonal office
knows the list of voting card IDs of all submitted and confirmed votes. While the new
Algorithm 6.8 (RequestProofNonParticipation) is trivial, it is unclear how this service will
work in practice. For example, given the definition of VCard in Figure 6, it seems as if
the voting card ID vcid is not directly known to the voter, so it remains unclear how the
cantonal office receives the right value. The given information in the new Section 6.2.6
is therefore incomplete.

Another entirely new aspect is discussed in the new Section 6.2.7. The addressed problem
is a situation, in which not all control components have the same view after the election
phase. This could happen for various reasons, intentionally or unintentionally. In such

128

a case, the check performed by algorithm VerifyMixDecOnline will fail for at least one
control component and the tally procedure is aborted. To recover from such a situation,
an additional trustworthy protocol party called dispute resolver is introduced. The idea
to check the inclusion of each submitted and confirmed vote by a third party, who calls
two new algorithm SendVoteAgreement and ConfirmVoteAgreement for that purpose. The
goal is to come up with an agreed list of confirmed votes, which is accepted by all control
components as input for re-running the tally phase. While we agree that dispute resolving
procedures can help to increase the robustness of a cryptographic protocol, we are not
sure if it is necessary to include it as part of the protocol description, and also if the OEV
regulations allow the introduction of additional trustworthy parties. Note that there may
be other disputes, for example during the setup phase. Therefore, we recommend moving
this discussion into a separate section.

B.3.6. Randomness Generation

As announced in the project’s main CHANGELOG.md file of the December release, we
found a new configuration sub-folder security in the root directory of the E-voting compo-
nent. It contains two sub-folders security/windows and security/linux with cor-
responding java.security properties files. This is a response to our comments in
[HKLD22c, Section 2.7] about the importance of a reliable and high-quality entropy
source. There, we made several recommendations for improving the reliability and qual-
ity of the entropy source, for example by introducing health tests or CPU time jitter
entropy. So far, our recommendations have not been considered.

Copying the Java java.security properties files into the project’s main directory has
no security impact, because it does not prevent Java from reading the security properties
from the original file in the JRE installation directory. In the README.md file of the
security sub-folder, Swiss Post justifies this step as a measure for increasing the system’s
auditability:

“The Swiss Post Voting System relies on the operating system to select a
high-quality PRNG when performing cryptographic operations. For increased
auditability and to ensure that an appropriate PRNG is selected in practice,
this folder contains the Java security configuration for the Linux and Windows
operating systems used in the deployed system.”

With respect to the selected entropy source, we can only observe that the copied files
contain correct standard entries "securerandom.source=file:/dev/random", but this
says nothing about the configuration of the machine on which the deployed system is
running. To claim that these files are helpful for increasing the system’s auditability is
therefore misleading. Note that even if the implementation of SecureRandom is properly
configured to take the entropy from /dev/random, it is still possible to redirect the entropy

129

source to something else on the operating system layer. We discussed such possibilities
in our report from last year.

We conclude this discussion by emphasizing one more time the importance of this subtle
topic. We believe that the randomness generation should never be delegated to a single
not fully reliable entropy source, and that a safety net for detecting the most obvious
failure cases should always be installed on top of it. We have expressed our concerns
already in [HKLD22c, Section 2.7], we repeated them in Subsection 2.2.7, and we still
have them after looking at the December release and finishing the second assessment
round.

B.4. Verifier

The verifier specification [VerSpec] has been substantially extended in the November
and December releases. For example, several adjustments were necessary to incorporate
the write-ins. Furthermore, as a response to our remark in Subsection 3.4 that some
verification steps were not sufficiently well specified, many more details are now provided.
A total of 41 new pseudocode verification algorithms have been introduced for that
purpose. The following list gives an overview of all the major changes that we observed
in the specification document:

• New Section 2.4 on Manual Checks by the Auditors added.

• New input file setup/setupComponentPublicKeys.json added to Table 2.

• Message SetupComponentConfig (signed by setup component) in Table 3 renamed
into CantonConfig (signed by canton).

• Content of message SetupComponentPublicKeys in Table 3 extended with missing
zero-knowledge proofs.

• New message ElectionEventContext added to Table 3.

• New input file tally/eCH-0222.xml added to Table 4 and a new authenticity check
TallyComponentEch0222 added to Table 5.

• Content of the message TallyComponentVotes in Table 5 extended from Lvotes

to pLvotes, LdecodedVotes, LwriteInsq. Lines 5–6 of Verification 2.11, Lines 2–5 of
Algorithm 4.2, and Lines 8–9 of Algorithm 4.3 adjusted accordingly to include
checking the write-ins.

• New explicit Verifications 2.01 to 2.08 added to Section 3.2 (authenticity checks of
setup verification).

• New explicit Verifications 3.01 to 3.15 added to Section 3.3 (consistency checks of
setup verification).

130

• New explicit Verifications 7.01 to 7.07 added to Section 4.2 (authenticity checks of
tally verification).

• New explicit Verifications 8.01 to 8.11 added to Section 4.3 (authenticity checks of
tally verification).

• Setup component public keys added to the inputs of Verification 10.01 (Line 3
extended accordingly), Algorithm 4.1, and Verification 10.02 (Line 2 extended ac-
cordingly).

In an additional remark in Section 2.1, a justification is given for the absence of pseu-
docode algorithms for the two top-level verification procedures VerifyConfigPhase and
VerifyTally. This is another response to one of our remarks in Subsection 3.4.

While reviewing the source code of the verifier component, we located the added verifi-
cation steps and their implementations. However, due to the limited timeframe of the
second assessment round and the dynamic nature of the verifier specification, we were
unable to conduct an equally thorough audit of these steps, compared to the algorithms
of the crypto-primitives and e-voting components. As in previous versions, a catalog of
implemented verification steps is given in the README.md file of the verifier-backend
project. Compared to the October release, the number of entries in this catalog has been
increased from 39 (24 for verifying the setup and 15 for the tally) to 51 (30 for verifying
the setup and 21 for the tally). The extended catalog of the latest version is shown in
Figure 12.

As each entry in the catalog has a name and an assigned identifier, we would have
expected that theses names and identifiers match with the pseudocode verifications in the
specification. For the names, in most cases, this is actually the case now, but not for the
identifiers. For example, the entry VerifySignatureCantonConfig with identifier 201 clearly
correspond to Verification 2.02, so the identifier is not aligned with the numbering (for no
obvious reason, the numbers of most 2.0X, 3.0X, and 5.0X verifications are shifted by 1
compared to corresponding catalog identifiers). In some cases, the misalignment is even
more visible, for example in the case of VerifyEncryptedPCCExponentiationProofs with
identifier 504 and number 5.21 or in the case of VerifySignatureControlComponentBallotBox
with identifier 200 and number 7.01. Note that neither the identifiers nor the names in
the catalog are unique, which is very confusing. We already criticized the lack of a
clear concept, so we are surprised to see that this still seems to be the case. Even some
fundamental terminology is not used consistently, for example the redundant terms config
and setup are mixed up on many occasions. We recommend to scan the whole document
for such inconsistencies and to remove them in a systematic manner.

In the new Section 2.4 about the manual checks of the auditors, it is not always clear,
what exactly the auditor has to accomplish. The following quote gives an example of a
statement that is contradictory in itself:

131

Figure 12: Catalog of verification tests as defined in the README.md file of the verifier
backend.

“Moreover, the auditors can assume that the configuration of the election
event—signed by the canton [. . .]—is correct. Nevertheless, the auditors
should also manually check that the information in the election event con-
figuration is correct.”

We conclude from our analysis of the verifier component that many parts are still under
construction and refinement. We can confirm that changes made to the cryptographic
protocol have been updated and that some of the underspecified verification steps have
been clarified, but for example most of the statements in textual form listed in Ap-
pendix A.4.1 are still present in the current version. We can also confirm that the most
obvious and relevant checks are all present, but even after having examined all specified
algorithms and their implementations, we cannot confirm that the implemented catalog
of verification steps covers really everything. The specification document does not yet
provide stringent evidence for the verification process as a whole, in the sense that it
does not prove the existence of a complete and unbroken verification chain. We are also
not convinced that the information given in [VerSpec] is sufficient for a third party to
develop an independent verifier.

132

B.5. Recapitulation

Our assessment of the November and December releases was conducted under enormous
time pressure. For analyzing and evaluating the December release, for example, we only
had a period of less than 20 working days and an overlap with both the end of the year
and the end of the academic semester. In our findings reported in this second addendum,
we demonstrate that many important parts of the system have been updated in both
the specification and the code, but given the tight schedule, we were not always able
to conduct our analysis as carefully as we would have wished. We are also not fully
convinced, that evaluating a system of such great complexity in the proposed manner,
i.e., with new releases and additional assessments rounds every couple months, is an
adequate process for checking its security properties. The greatest challenge that we
faced in this process was keeping a focus on the big picture while looking at all the tiny
technical details. In some cases, we are unable to do both at the same time.

The most general conclusion from this second additional evaluation round comes from
our impression that almost all system components are still work in progress. We discov-
ered numerous last-minute code changes and enhancements to the documentation, but
we also observed that some of these changes were not implemented with sufficient care
and dedication. A good example is the information added to Section 5.1 about voter
authentication, which seems to contribute to the clarification of this aspect. However,
our detailed code analysis showed quite the opposite, namely that the implemented pro-
cedure is completely underspecified. Such discrepancies between specification and code
are clearly not in in the sense of [OEV, Art. 25.2.8], which requires that “the crypto-
graphic protocol, specification, design and source code are aligned ”. Therefore, despite
the progress and improvements that we also observed in many places, it does not seem
that the system has already reached the expected level of maturity.

133

References

[AB17] J. Alwen and J. Blocki. Towards practical attacks on Argon2i and bal-
loon hashing. In A. Sabelfeld and M . Smith, editors, 2nd IEEE European
Symposium on Security and Privacy, pages 142–157, Paris, France, 2017.

[BCG`15] D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi. A
comprehensive analysis of game-based ballot privacy definitions. In L. Bauer
and V. Shmatikov, editors, SP’15, 36th IEEE Symposium on Security and
Privacy, pages 499–516, San Jose, USA, 2015.

[Blo18] J. Bloch. Effective Java. Addison-Wesley, 3rd edition, 2018.

[HDKL18] R. Haenni, E. Dubuis, R. E. Koenig, and P. Locher. Process models for
universally verifiable elections. In R. Krimmer, M. Volkamer, V. Cortier,
R. Goré, M. Hapsara, U. Serdült, and D. Duenas-Cid, editors, E-Vote-ID’18,
3rd International Joint Conference on Electronic Voting, LNCS 11143, pages
84–99, Bregenz, Austria, 2018.

[HKLD22a] R. Haenni, R. E. Koenig, P. Locher, and E. Dubuis. CHVote protocol spec-
ification – version 3.3. IACR Cryptology ePrint Archive, 2017/325, 2022.

[HKLD22b] R. Haenni, R. E. Koenig, P. Locher, and E. Dubuis. Examination of the Swiss
Post Internet Voting System – Scope 1: Cryptographic Protocol. Technical
report, Bern University of Applied Sciences, 2022.

[HKLD22c] R. Haenni, R. E. Koenig, P. Locher, and E. Dubuis. Examination of the
Swiss Post Internet Voting System – Scope 2: Software. Technical report,
Bern University of Applied Sciences, 2022.

[Wie03] M. J. Wiener. Safe prime generation with a combined sieve. IACR Cryptol-
ogy ePrint Archive, 2003/186, 2003.

134

	Management Summary
	Introduction
	Relevant Documents
	Source Code
	Purpose, Scope, and Overview of Examination
	Summary of Findings

	Review of Previous Findings
	Scope 1: Cryptographic Protocol
	Scope 2: Software

	Systematic Analysis
	General Problems
	Cryptographic Primitives
	System Specification
	Verifier

	Addendum-1: October Release
	Overview of Changes
	Cryptographic Primitives
	E-Voting
	Verifier

	Addendum-2: November and December Releases
	Overview of Changes
	Cryptographic Primitives
	E-Voting
	Verifier
	Recapitulation

