
Examination Report on the

Swiss Post e-Voting System

Thomas Haines, Olivier Pereira, Vanessa Teague
thomas@hainest.com, olivier.pereira@uclouvain.be, vanessa.teague@anu.edu.au

September 20, 2022

Contents

1 Executive Summary 2

2 Scope 1: Cryptographic protocol 3
2.1 Scope . 3
2.2 Alignment of the security model with the Ordinance 3

2.2.1 Role of the auditors . 3
2.2.2 Roles of the Tally Control Component and Electoral Board 5

2.3 Missing Elements in the Specification 6
2.3.1 Universal verifiability . 6
2.3.2 Handling Inconsistent Views of Confirmed Votes 6

2.4 The Vote Confirmation step . 7
2.4.1 The verifier specification - Section 4.3 7
2.4.2 System specification . 7
2.4.3 The computational proof - Section 12 7
2.4.4 Section 16.5 Vote rejection and the proof of Theorem 2 . 9
2.4.5 Section 16.7 Vote injection 10

2.5 Notes on the Cryptographic Primitives, Definitions and Proofs . 10
2.5.1 Symmetric encryption . 11
2.5.2 Weak Pseudorandom Functions 11
2.5.3 Proof Systems . 11
2.5.4 Extractors . 12
2.5.5 Proof of Vote Privacy . 13
2.5.6 Context Verification . 13
2.5.7 Primality testing . 14

3 Scope 2: Software 15
3.1 Scope . 15
3.2 Methodology . 16
3.3 High level comments . 16

3.3.1 Lack of maturity . 16

1

3.3.2 Technical debt . 17
3.3.3 Auditability . 17
3.3.4 An example attack on universal verifiability 18
3.3.5 Other observations . 19

3.4 Detailed comment . 19
3.4.1 d) Assess the alignment between software development

products . 19
3.4.2 e) Assess the implementation of the protocol 20
3.4.3 f) Assess the functionalities 22

3.5 Future work . 25

1 Executive Summary

The system continues to improve and many previous issues have been resolved
or clarified. However it remains the case that critical parts of the system are
unspecified and no complete version of system’s source code—encompassing the
various components and the verifier—has been published. Given these circum-
stances, we cannot at this time make anything except interim remarks about
the (non)-compliance of the system with the Federal Chancellery Ordinance on
Electronic Voting.

Most of the system specification has now reached a reasonable state of ma-
turity. Various challenges remain open though, and we point:

� Open questions regarding the alignment between the security model re-
quired by the Ordinance and the one used in the security proofs.

� Missing elements in the verifier specification, that break universal verifi-
ablity.

� Missing element in the protocol specification and proof that specify how
inconsistent views by Control Components are handled.

� Several technical difficulties in the security definitions and proofs – many
seem easy to fix, but some remain unclear to us at this point.

With regards to Scope 2, the verifier code—which is key for all security
properties—has been out for less than a month at the timing of writing; this
would not have been sufficient time under the best of circumstances. Moreover,
there have been numerous difficulties including missing dependencies, failing
unit tests, undocumented architecture decisions, and unvalidated inputs.

Our initial impression is that much of the code is in good condition with
notable exceptions; however, at present the code as a whole lacks maturity;
this is especially true in terms of security and we have been able to find sev-
eral exploitable vulnerabilities which violate the key requirement of complete
verifiability; we expect that more similar vulnerabilities exist in the code at
present.

2

2 Scope 1: Cryptographic protocol

2.1 Scope

Our analysis is based on the documents available for the review of the Swiss Post
e-voting system and the Swiss Federal Chancellery’s latest version of the Ordi-
nance on Electronic Voting (OEV). These documents are listed here, together
with the name that we will use to refer to them in the text:

� Federal Chancellery Ordinance on Electronic Voting (OEV) of May 25,
2022 (status as of July 1, 2022) [1] – (Ordinance).

� Swiss Post Voting System – System specification, Version 1.0.0, June 24,
2022 [6] – (Specification).

� Protocol of the Swiss Post Voting System – Computational Proof of Com-
plete Verifiability and Privacy, Version 1.00, July 29, 2022 [3] – (Proof).

� Cryptographic Primitives of the Swiss Post Voting System – Pseudo-code
Specification, Version 1.0.0, June 24, 2022 [2] – (Primitives).

� Swiss Post Voting System – Verifier specification, Version 1.0.1, August
19, 2022 [8] – (Verifier).

Our analysis also took into account the “Response to examination report”
documents issued by Swiss Post regarding Scope 1 & 2 of the 2021 review (all
dated of April 20, 2022), as well as the inputs from various interactions with
the Federal Chancellery and Swiss Post, whom we all thank for their help and
insight.

The system specification and protocol proof continue to improve, including
compared to the status of 2021. Still, the material remains incomplete, some-
times inconsistent, and only partially aligned with the ordinance. Though this
may be mostly cosmetic in many places, it seems that none of key requirements
are satisfied in the system as currently presented. The points below highlight
problems with the current documents, they should not be interpreted as ex-
haustive: the points that are raised may require changes and clarifications that
are significant enough to require another careful pass once the current open
questions are addressed.

2.2 Alignment of the security model with the Ordinance

2.2.1 Role of the auditors

There are discrepancies between the role of the Verifier (or the Auditor’s tech-
nical aid, in the wording of the Ordinance and according to Table 1 of the Proof
document) and the Ordinance.

First, Table 2 of the Proof document, following the Ordinance, indicates that
there is no channel from the Auditor’s technical aid to any system component.

3

This means that these technical aids cannot play any interactive role in the
protocol execution.

However, as explained in Section 4.4 of the Specification document and dis-
cussed in Section 11.4 of the Proof document, the protocol requires the verifier
to perform the VerifyConfigPhase algorithm at the end of the SetupVoting algo-
rithm and to report an invalid execution to the Setup Component. Section 11.4
of the Proof document acknowledges that this is a departure from the prescrip-
tions of the Ordinance, and justifies it by saying that, in reality, the Verifier
is deployed in the same secure environment as the Setup component, and then
offers the same level of security.

We are concerned by this explanation for two technical reasons:

� Art. 2.9.1.1 of the Ordinance appendix confirms that the auditors and
their technical aids must be considered untrustworthy for individual ver-
ifiability. However, since these technical aids are the only ones to check
the ZK proofs produced by the control components, we see that individual
verifiability completely depends on the auditors and their technical aids
to be trustworthy.

� Art. 2.9.3.1 of the Ordinance appendix confirms that the auditors and their
technical aids must be considered untrustworthy for privacy. We suspect
that this is satisfied by the protocol, but do not see how it is reflected in
the actual security definition and proofs in Section 18. We would expect
the adversary to run the VerifyConfigPhase algorithm in the security game
of Fig. 37, but it seems to be honestly executed by the challenger at Step 4.
Nothing appears in the more detailed Fig. 38 either.

On a more conceptual level, the argument that the departure from the trust
model required by the Ordinance is less problematic because the Verifier runs in
a trusted environment seems to go against what is envisioned in the explanation
of the Ordinance, which states on p. 12: “The use of auditors promotes trans-
parency. Voters should be able to assume that auditors will draw attention to
possible irregularities. The use of auditors in the sense of voter-representation
[...]” then, on p. 15, “As long as the technical tool [the auditors] use to check
the proof (typically a laptop computer) [. . .]”.

We certainly support the idea of leaving the auditing work quite transparent,
performed by people that are independent of the election organizers, and would
be representative of the voters and candidates. Basing the verification process
on a Verifier running in a controlled environment seems much less transparent
than a process in which multiple auditors come with laptops.

But these difficulties also seem to come from a completely unnecessary non-
conformity: would there be a problem with logically merging the current Setup
and Verifier components, and to let the auditing work related to universal verifi-
ability be performed by auditing devices that are external to the infrastructure?
It would also probably make sense to require more verification work by the con-
trol components.

4

More generally, the instantiation of the auditors and their relation (if any)
to the setup component should be better explained.

2.2.2 Roles of the Tally Control Component and Electoral Board

There is also an important discrepancy between the threat model given in Ta-
ble 1 and Table 5 of the Proof document and the one used in the privacy
definition (Def. 15) of the same document. (A very similar point was already
raised in our March 2022 report. Many changes were made since then, but this
difficulty isn’t solved, nor addressed in the responses we received.)

Table 1 of the Proof document indicates that the Tally Control Compo-
nent and the Electoral board are part of the “Untrustworthy System”, and
Table 5 of the same document confirms that the “Untrustworthy System” must
be considered untrustworthy regarding voting secrecy, which is aligned with the
Ordinance.

This is partially confirmed in the Specification document, which indicates
that “the Swiss Post Voting system fulfills the desired security objectives without
relying on the electoral board” – nothing similar is indicated regarding the Tally
Control Component in that document.

The “E-Voting Architecture” document indicates that the four online con-
trol components (CCRs and CCMs) are controlled by Swiss Post. As such,
Art. 2.9.3.3 of the Ordinance seems to apply, implying that “none of these con-
trol components is considered trustworthy” for privacy.

But this raises a difficulty: the Tally Control Component and the online
control components jointly hold the secret keys that are sufficient to decrypt all
the individual votes. But, if they must all be considered untrustworthy, then
we do not see how the model described in Table 1 and Table 5 of the Proof
document can guarantee the secrecy of the votes: in that corruption models, all
the votes can be decrypted as soon as they are cast.

And, indeed, we observe that the formal definition of privacy (Def. 15 of
the Proof document) considers a different security model: here, the adversary
chooses one control component to behave honestly, within a set that includes the
four online control components and the tally control component. So, the tally
control component may actually be considered as trustworthy, in contradiction
with the security model of Table 1 and Table 5.

This certainly makes sense from a security point of view. But now, the
relationship with the security model of the ordinance becomes unclear. Section
18.2 indicates that the Tally Control Component, together with the four online
control components, should be seen as a single control component group of five
components, contrary to what is indicated in Table 1. But this would also
appear to be a discrepancy with the Ordinance, which considers groups of 4
control components. This should be reflected much earlier in the document,
around Tables 1 and 5, and conformity to the Ordinance should be discussed.

Considering the Tally Control Component as honest (and the online control
components as dishonest) now raises the question of the trust that must be
placed in the Electoral Board. Leaving it untrustworthy (as in Table 1) makes

5

little sense since the compromise of the Electoral Board means that the secret
key used by the Tally Control Component would be compromised as well, re-
sulting in a complete loss of privacy when the online control components are
dishonest.

But what is then the trust model regarding the Electoral Board? And, if
there is a need to consider that at least one of the Electoral Board Member
should be honest when the Tally Control Component is selected as the honest
one, how is it possible that nothing related to the entropy of the passwords
selected by the board members appears in the security bounds of Theorem 5?
Since SetupTallyEB derives EBpk from these passwords, the strength of these
passwords seems crucial for privacy.

To conclude: the trust model regarding the Tally Control Component and
the Electoral Board should be:

� made consistent throughout the documentation;

� mapped with the roles and trust model defined in the Ordinance.

Furthermore, depending on the trust model that is proposed regarding the elec-
toral board, it may be necessary to adapt the security proofs accordingly.

2.3 Missing Elements in the Specification

2.3.1 Universal verifiability

The evaluation of universal verifiability at the moment is problematic because
of missing information in the verifier specification:

� The pTable needs to generated or verified to ensure a consistent view with
the information sent to the print office.

� The correct decoding of the primes into voting options needs to be verified.

� Moreover, all steps performed by the auditor with respect to the verifier
UI needs to be checked. For example, verifying that the number of voter
cards issued matched the number of eligible voters.

Those steps do not seem to be complicated to add, but their absence seems
to break universal verifiability.

2.3.2 Handling Inconsistent Views of Confirmed Votes

Section 12 of the Proof document is novel, and addresses a non-conformity that
was identified in a previous round of review: how to handle control components
that have different views of the set of confirmed votes that need to be included
in the tally?

The new protocol that is outlined in that section is plausible. However,
the dispute resolution process that is outlined here appears to be completely
missing from the Specification document, and does not seem to be reflected in

6

the security definitions and proofs of the Proof document. As such, the docu-
ments do not provide any input that we could use to assess whether this dispute
resolution process, once fully specified, would enforce the security guarantees
required by the Ordinance.

We elaborate on this question in the next subsection, since it was a central
concern in our previous report.

2.4 The Vote Confirmation step

We focus here on the new Vote Confirmation protocol, including the handling
of inconsistent views of confirmed votes. This includes Sections 12 and 16.5–8
of the Proof, Section 5.2 of the Specification and Section 4.3 of the Verifier.

We want to start by stressing that, at this stage, we do not see any feasible
attack. However, there is still some confusion over the resolution of inconsistent
views (among the control components) of which votes were confirmed. This
confusion carries over to the proof of Theorem 3, for which the correctness
condition does not seem to have been updated for the new resolution process.

We may be confused about the intended process, but we have done our best
to explain which parts of the specification, verification specification and proof
are confusing or apparently inconsistent.

2.4.1 The verifier specification - Section 4.3

The first bullet point requires that the set of confirmed encrypted votes should
be the same for each Control Component, regardless of order. This is perfectly
clear, but we do not understand how it relates to the resolution process described
in Section 12.2 of the computational proof.

2.4.2 System specification

Typo: In the comment at the bottom of p.60 it means lVCCid,j not hlVCCid,j .
The CCRs send hlVCCid,j to the VS before they can assess whether the confirma-
tion attempt has been successful.

The system specification is unclear about what happens if different CCRs
(initially) compute different lists of confirmed votes. Section 6.1.1 states, “The
control components retrieve the mixnet’s initial ciphertexts from the list of
confirmed votes LconfirmedVotes,j that they established during the voting phase.”
However, it is not clear at this point what happens if their lists are different,
that is if LconfirmedVotes,j 6= LconfirmedVotes,j′ .

2.4.3 The computational proof - Section 12

This section suffers from a lack of clarity around exactly what list of votes gets
included. There are 5 active participants: the VS and the four CCRs. They
might (through malice or accident) produce different sets of confirmed votes
LconfirmedVotes,j

7

Some of us misunderstood the sentence “we do not foresee a recovery proce-
dure for handling inconsistencies in the ConfirmVote protocol”—it seems that
there is a recovery procedure (sketched in Section 12.2), but this is performed
by some external party rather than the CCRs themselves. These questions are
not resolved by the discussion in Section 12.2, which seems to assume that the
honest control component’s transcript is accepted, without explaining how to
tell which control component is honest.

One interpretation is that a vote will be included into the final LconfirmedVotes
if any CCR can produce a complete set of four hashed long vote cast return code
shares {hlVCCid,j}4j=1 that can be used to extract a share lVCCid,j from the long
Vote Cast Return Codes allow list LlVCC. This mathematical property is well-
defined, but Section 12 does not clarify who checks it or how they communicate
the results to the other participants. When a (perhaps cheating) CCR is obliged
to “provide evidence,” to whom is that evidence provided?

A caution about assuming the honest CCR can be identified when re-
solving inconsistencies. Looking at the resolution process of 12.2.1 and 12.2,
one might be tempted to think that the CCR whose LconfirmedVotes is a superset of
the others’ must be honest. However, this is not necessarily the case. Consider
the following behaviour, which does not violate any of the security goals of the
system, but does allow a dishonest CCR to make it seem as if they have properly
counted more votes than others.

Suppose a voter wishes to confirm their vote and sends the correct BCKid.
The VS and a CCR (wlog CCR4) are malicious. The honest client computes and
uploads the correct CKid. Dishonest CCR4 computes the wrong value of hlVCCid,4,
which is forwarded to an honest CCR (wlog CCR1). Although honest, CCR1’s
run of VerifyLVCCHash (Algorithm 5.10) fails, and it does not add vcid to
LconfirmedVotes,1. The VS is unable to compute the correct VCCid, and this voter
does not receive their Vote Cast Return Code.

Meanwhile, the dishonest CCR shares the correct hlVCCid,4 value with the
dishonest VS. Note that VS now has the correct hlVCCid,j for j = 1, 2, 3, 4,
so they can gather enough evidence to prove that the vote should have been
included, during the resolution process sketched in Section 12.2.

This works whether CCR2 and CCR3 are honest or malicious.
Nothing about this violates any of the security goals: the voter confirmed

their vote, and their vote will be counted. However, it serves as a caution against
laying blame in the case that one CCR seems to have omitted a vote that others
can prove should have been counted. In this example, the honest CCR has been
made to look as if it maliciously dropped a vote when it did not. The protocol
should not be assumed to have accountability.

Our expected intuition for the security proof The following is our intu-
itive understanding of how we think the argument for protocol security would
work. There are two crucial parts of the (intuitive) argument that a vote can-
not be accepted without the voter having entered the correct ballot confirmation

8

code.

1. An honest CCR will not add vcid to LconfirmedVotes unless it has received
all four valid hlVCCid values.

2. An honest CCR will not compute a valid hlVCCid value without the correct
CKid.

It follows that at least one honest CCR must have received the correct CKid.
There also needs to be an argument that it is hard for the (three) dishonest

CCRs to guess (and verify) either CKid or VCCid without the collusion of the
fourth CCR. (Note that it is straightforward if all four CCRs collude to enu-
merate all possible BCKid values until they find the correct one. This would,
with high probability, require all of them to exceed the permitted number of
guessing attempts.)

Now consider the argument that a vote cannot be rejected unanimously if a
voter has received the correct VCCid. This relies on the following steps.

1. The VS cannot compute VCCid without all four lVCCid,j values.

2. An honest CCR will send lVCCid,j only if it adds vcid to LconfirmedVotes
(Alg. 5.10).

3. An honest CCR will add vcid to LconfirmedVotes if and only if it has a
complete, correct list of hlVCCid values.

Since at least one CCR must be honest, it follows that it must have added vcid
to its version of LconfirmedVotes and it must have the evidence (the list of hlVCCid
values) to prove that this was done correctly.

We now examine the security proofs with this intuition in mind.

2.4.4 Section 16.5 Vote rejection and the proof of Theorem 2

We cannot see an attack on vote rejection. However, the reasons that this
is difficult are not well clarified by the proof. Although the games, theorem
statements and proofs are much improved from previous versions, there are still
some ambiguities and gaps.

Game rac− rej.1: The unimportance of exponentiation proof sound-
ness In Line 13 of CreateLVCCSharej , CCRj generates a proof of valid expo-
nentiation for lVCCid,j , the value that is subsequently used by VS to create the
Short Vote Cast Return code VCCid. The exponentiation proof is never verified,
by either VS or the auditors. Similarly, although hlVCCid,j is supposed to be a
hash of lVCCid,j , this is never checked either.

We do not believe that either of these checks are necessary, so this does not
seem to lead to an attack. We think the protocol would be just as secure if the
exponentiation proof were omitted.

Again, the proof does not seem to reflect accurately why the protocol is
secure, because the proof of Theorems 2 and 3 (vote rejection and injection)

9

both include terms related to the soundness of the ZKP, though this proof is
never verified. This affects the first game step in each theorem.

To put it more concretely, it would not matter if the adversary cheated
on the exponentiation ZKP, because the honest CCR would have added vcid to
LconfirmedVotes by then anyway, thus preventing vote rejection.

This does not make the theorem wrong—the extra term in the inequality
seems to be added unnecessarily, but this does not make the theorem false—
however, it does further support our observation that the proof is not closely
connected with the reasons that the protocols are secure.

Game rac− rej.3: and the definition of lVCCid,j The proof of indistin-
guishability here includes the crucial statement: “Whenever the oracle
OHonestVerifyLVCCShares returns lVCCid,j , it marks the ballot with vcid as
confirmed.” This is certainly a vital part of the argument, but it suffers from
some ambiguity here about whether we are referring to things by their name or
their value. Suppose the honest CCR can be induced to return the correct value
of lVCCid,j , but in the belief that it is retrieving the value for some other voter
id′—how would that possibility be included in this part of the proof?

Again we do not think there is a real attack here, but there is a gap in the
argument that the correct value could not be derived by tricking the honest CCR
in the context of confirming another voter’s vote.

2.4.5 Section 16.7 Vote injection

We cannot see an attack on vote injection. However, the reasons that this is
difficult are not well clarified by the proof.

The definition of badinj does not seem to be the right one, given the process
for resolving inconsistencies described in Section 12.2 of the Computational
Proof. Although that is not (yet) very precisely defined, it seems that a vote
will be included if any CCR can produce a complete set of four hashed long
vote cast return code shares {hlVCCid,j}4j=1 that can be used to extract a share
lVCCid,j from the long Vote Cast Return Codes allow list LlVCC. This CCR need
not necessarily be the honest one—indeed, no-one knows which one is honest
when they are trying to resolve inconsistencies (see above).

So this proof needs to be modified to define the bad event more carefully
based on the resolution process. This requires defining the resolution process
more precisely and then using that definition in the proof that vote injection is
not possible.

2.5 Notes on the Cryptographic Primitives, Definitions
and Proofs

The cryptographic primitives used in the protocol are outlined in the Com-
putational proof document [3], where security definitions are also given, and
primitives are instantiated in the Cryptographic Primitives document [2].

10

We list some inconsistencies, suspected typos/errors, questions, and sugges-
tions here.

2.5.1 Symmetric encryption

Section 4 of the Proof documents defines IND-CPA, IV-based encryption, then
mentions that it will use an authenticated encryption (AE) scheme in reality,
which is fine since an IV-based AE is also expected to be IND-CPA secure.

Section 5 of the Primitives document however defines something different:
it defines an AEAD (so, an AE that also supports associated data that are
authenticated but not encrypted), and calls it nonce-based.

� The change of terminology (nonce-based vs. IV-based) looks entirely cos-
metic. Would it make sense to use an “IV-based” terminology everywhere?
Since you are using the GCM-mode, which requires the use of an unpre-
dictable value, and since the literature (e.g., the original McGrew and
Viega paper and the NIST Special Publication 800-38D), our recommen-
dation would be to call it an IV everywhere.

� The GenCredDat algorithm (Alg. 4.8 in the Specification) actually makes
use of associated data. So, this creates a discrepancy between the encryp-
tion primitive defined in the Proof document and the one actually used in
the protocol. Our suggestion would be to define an AEAD in the Proof
document, and possibly to explain why the authenticity of the ciphertext
and associated data actually does not matter in the security proofs.

2.5.2 Weak Pseudorandom Functions

Section 5 of the Proof document has a definition of weak pseudorandom function
that we cannot parse.

� In the rPRF oracle definition, the adversary has access to an oracle that
appears to always return Fpp(k, x), which makes little sense for an oracle.
We would rather expect the adversary to be able to query an oracle that
would return (x, Fpp(k, x)) pairs with a freshly selected random value x
on each oracle call.

� Similarly, in the sPRF oracle, we would expect the adversary to see (x,R(x))
pairs for freshly selected random values of x.

2.5.3 Proof Systems

The definitions provided in Section 6 of the proof document appear to be quite
approximate.

� We cannot see how Definition 4 conveys the commonly accepted idea of
special honest verifier zero-knowledge, which requires that a simulator,
on receiving a statement and the verifier random coins as input, should

11

be able to produce a proof transcript that matches the distribution of a
honest proof/argument conditioned on these coins. This appears clearly in
Definition 3 of the Bayer-Groth paper that you are referring to, where the
simulator receives as input the adversarially chosen verifier randomness ρ.
The notion of SHVZK is also defined for public coin protocols, but we do
not find any mention of this in Definition 4 of the Proof document.

� It is mentioned after Definition 5 that special soundness implies soundness
in the sense of Definition 3. This only appears to be the case when the
challenge space is super-polynomial, which may or may not be the case
depending on the protocol that is considered.

� In Definition 6 of non-interactive zero-knowledge in EPROM, the PRO

oracle appears to be undefined.

� In Definition 7 of simulation-soundness, at Step 4 of the sSOUND experi-
ment, it is only checked that ((st∗, c∗, e∗) 6∈ T while traditional definitions,
including the one of Faust et al., will check that the full proof has not been
already given to the adversary – hence including the response z. Given
that π∗ must pass verification, the two notions would be equivalent when
the protocol has unique responses. This appears to be the case in the
protocols that you are considering, but it is not mentioned or discussed.

� In Definition 8 of Weak simulation extractability, we suspect that d should
be constant rather than polynomially bounded in the security parameter.
We also observe that it is verified that (st∗, π∗) 6∈ T , which appears to be
inconsistent with the definition of T that does not contain any full proof
π∗. Including full proofs in T would however address the issue pointed in
Definition 7, and be consistent with common definitions.

2.5.4 Extractors

Section 13.2 of the Proof document makes the following claim:

In some game hops, we require extractors: functions that extract
witnesses from NIZK proofs or plaintexts from ciphertexts. Their
existence allows us to state clear mathematical definitions and pre-
cise game hops. Extractors are used only by the Challenger in our
games and never run in reality; therefore, they can be computation-
ally unbounded.

This last argument seems to only offer one part of the picture. Indeed,
challengers may never be run in reality, but we may still need them to run
efficiently in security proofs.

For instance, looking at the proof of Lemma 2 (Vote Compliance), the re-
ductions that are outlined there do not seem to work as explained. If we observe
vc.2, the ideas appears to build B2 as emulating an interaction between the vc.1
challenger and the adversary in order to obtain the πEqEnc proof that can be

12

used to break the simulation soundness property. However, that strategy does
not seem to work because simulation soundness is only defined against a com-
putationally bounded adversary, and the challenger that B2 needs to emulate
does not run in polynomial time because it needs to run the Extract algorithm.
The same question can be raised in other places where unbounded extractors
are used.

2.5.5 Proof of Vote Privacy

There are several aspects that we cannot really follow in the vote privacy defi-
nition (Def. 15) and theorem (Thm. 5).

� As discussed above, we do not understand why, at Step 4 of the vote
privacy experiment, the VerifyConfigPhase is not left for the adversary to
run.

� As discussed above, we do not understand how the Electoral Board does
not play a role in Theorem 5 since its member jointly hold the secret
decryption key of the Tally Control Component, which may be the only
decryption key that is hoped to be out of reach of the adversary (when
h = m+ 1).

� The bound in the statement of Theorem 5 seems to be incomplete: those
associated to B9 and B10, which appear in the game priv.8, seem to be
missing.

� We do not see how the soundness or extractability of the Schnorr proof
does not play a role in this theorem (but only the fact that these proofs are
ZK). If we assume that a Schnorr proof is just an empty string and always
declared as valid, we certainly have a ZK protocol. But we then have the
usual attack on privacy in which we may have the first control component
as the only honest one, and the other control components picking their
public keys in such a way that they cancel the key of this first component.
There, the malicious control components become able to decrypt all the
ballots as they come, before the tallying phase even starts.

2.5.6 Context Verification

Input vs. Context. The Specification makes a distinction between algorithm
inputs and context. Such a distinction certainly makes sense, but also raises the
question of whether some context element really are context that may not need
any specific verification steps, or actual protocol inputs that need to be verified.

This question becomes quite visible when looking at the code of the system,
which appears to support multiple elections as represented by an election event
ID, which may each contain several verification set ids, simultaneously. This
is poorly aligned with the algorithms as shown in the specification which list
this information as context which is “invariant.” In particular if the context
depends on the input, then crucial checks on the context may be forgotten since

13

they are viewed as invariant. The attack on universal verifiability described in
Section 3.3.4 can be seen as an instance of that kind of issue.

Election context in proofs. Related to the previous issue, we note that
certain security properties are not captured (well) by the current documentation.
For example, it is clear that the security requirements include that a voter should
only be able to vote for the ballot box which they are registered; it’s far from
clear from the description and proof that this is enforced – the context appears
to be given for granted.

In general, we think that context variables need more discussion throughout
the documents.

2.5.7 Primality testing

Section 4.6 of the Primitives document specifies a fairly sophisticated primality
test. The motivation that is provided for the use of this test is the potential
challenges that could come from adversarially chosen prime candidates. How-
ever, this concern does not seem to apply here since this primality test will only
be applied to large integers that must be selected in a way that is verifiably
(pseudo-)random.

We are then confused as of why 6 pages of the document are needed to
describe a test that could be replaced with something considerably simpler and
less error-prone (e.g., a standard Miller-Rabin test, as proposed).

It is also suprising to see such a test detailed in full here: primality tests
are available in numerous standard libraries. So why are you not relying on any
such library, just as it is done for implementation of the standard cryptographic
mechanisms like the AES? Is there anything in your test that differs from those
available in standard libraries? This would help understanding the purpose of
this long specification.

14

3 Scope 2: Software

Summary

With respect to the code, we have only had time to conduct an initial pass
and a few small security checks; we have not begun to assess compliance with
most of requirements in this scope. Due to these factors this report should
be viewed as very interim. The verifier code—which is crucial for all security
properties—has been out for less than a month at the timing of writing; this
would not have been sufficient time under the best of circumstances. Moreover,
there have been numerous difficulties which have slowed our progress including
missing dependencies, failing unit tests, undocumented architecture decisions,
and unvalidated inputs.

Our initial impression is that much of the code is in good condition with notable
exceptions; we expect most of it is compatible with ordinance requirements but
the missing pieces are crucial. Moreover, at present the code as a whole lacks
maturity; this is especially true in terms of security and we have been able to
find exploitable vulnerabilities which violate the key requirement of complete
verifiability (Sec. 3.3.4); we expect that more similar vulnerabilities exist in the
code at present. This risk is amplified by missing details in the specifications,
as we detailed in our analysis of scope 1.

Positively, the vulnerabilities we have found so far—while severe—are easy to
fix. From our perspective the existence of exploitable vulnerabilities at this
point is neither surprising, worrisome, nor indicative of bad practices. Indeed,
we expect to see such vulnerabilities being detected until the system achieves a
greater degree of maturity. We expect that with about six months of work, at
the current rate, a fair degree of certainty could be be achieved that the code
is free of the application specific vulnerabilities we are currently finding; this
estimate depends on further examination not finding vulnerabilities which are
deeper than those currently discovered.

3.1 Scope

Material in scope In addition to those materials mentioned in scope 1 we
looked at the following code packages.

� Crypto-Primitives Source Code, Version 0.15.2.3 [4] – (Primitives Code)

� Crypto-Primitives-Domain Source Code, Version 0.15.2.5 [4] – (Primitives
Domain Code)

� Verifier Source Code, Version 1.0.0 [7] – (Verifier Code)

� E-voting Source Code, Version 0.15.3.0 [5] – (System Code)

15

Questions in scope Our analysis in scope 2 covers the parts of the audit
concept detailed in Table 1.

Requirements of the draft OEV
d) Assess the alignment between soft- 24.1.9, 24.1.11, 25.1.3, 25.2.8
ware development products
e) Assess the implementation of the protocol 2.5, 2.6, 2.7,2.8,2.12, 3.17, 25.1.2
f) Assess the functionalities 3.13, 2.11, 4, 5.1, 8.10, 9, 10, 11.5, 11.6, 25.7

Table 1: Requirement of the draft OEV covered in scope

3.2 Methodology

Our analysis consisted principally of manual code review using an Integrated
Development Environment (IDE). When we suspected we had found a problem,
we followed up by writing custom unit tests to verify. Due to time constraints
we have achieved very little beyond understanding how the code works. We
hope to complete a fuller review in the future as we detail in future work (Sec.
3.5).

3.3 High level comments

In this section we will discuss the high level issues that have arisen in our
examination of the code so far.

3.3.1 Lack of maturity

The code is in fairly good condition but has not yet reached the level of maturity
we would expect for security critical systems. Various indicators of this are
detailed below, the first three hindered the examination of the code whereas the
final ones reflects possible or actual security problems.

Missing dependencies When the Verifier Code was released we were not
able to build it initially because it depended on version 0.15.2.5 of the Primi-
tives Domain Code whereas the most recent version of the Primitives Domain
Code then available was 0.15.2.3. This was fixed by Post within 48 hours of us
notifying them of the issue.

At the time of writing it remains the case that the System Code available is
incompatible with the released Verifier Code as noted in https://gitlab.com/

swisspost-evoting/verifier/verifier/-/issues/2; this has hindered us in
testing possible vulnerabilities.

16

Undocumented architecture decisions Both the System Code and Ver-
ifier Code make use of slightly different variants of inversion of control using
the framework Spring. These programming techniques increase modularity and
extensibility at the cost of loss of comprehensibility of code flow for those unfa-
miliar with the framework. These design decisions may well be warranted but
require better documentation so that those unfamiliar with the details of the
framework can understand the alignment between the code and specifications.
We are now fairly comfortable with the decisions ourselves based on discussions
with Post but the points they raised in those meetings should be documented.

Failing unit tests Having the correct dependencies we then tried to build
the code but where unsuccessful due to failing unit tests. We were able to trace
these down to a bug in the code responsible for retrieving data from disk which
was behaving differently for Post then it was for us. This bug will be fixed
in a future release see https://gitlab.com/swisspost-evoting/verifier/

verifier/-/issues/3.

Unvalidated inputs The concern in scope 1 (Sec. 2.5.6) about the sepa-
ration of input and context in the pseudocode algorithms turns out to be far
from theoretical. Looking at the code it seems that often the context is taken
as input without validation. For example, looking at the control components
confirm vote code it seems that the verification card set of the voter is taken
as input without validation; these invalid inputs are eventually caught by the
allow list but that errors of this kind are being caught late by unrelated security
checks is concerning.

We will discuss a similar example in Sec. 3.3.4 which does not get caught.

3.3.2 Technical debt

Post has made extensive improvements compared with the sVote system they
started with. There are points, however, were the system still has significant
unnecessary complexity which makes auditing harder and creates possible vul-
nerabilities.

For example, conceptually there are three tiers of IDs in the system: election
IDs, voting rights IDs, and voter IDs. However, the system implements at least
five different kinds of IDs with several required to have a one-to-one correspon-
dence with each other. Refactoring the system to use a simpler ID system would
reduce the attack surface significantly.

3.3.3 Auditability

The design decisions in the code are fairly common in commercial software
development; the decisions focus on modularity and allowing reuse. Better

17

justification is needed to explain why these decisions are appropriate for the
verifier given the substantial cost to auditability, we give a few examples below.

In many cases the security logic is spread across the processor, service, al-
gorithms, and underlying data structures. This leads both to a high level of
duplication and to difficult seeing all the checks happen; in several cases we
resorted to writing unit tests to check the attacks are detected rather than try
and read the code.

As alluded to in 2.5.6, often elements of the “context” are received as input
with no apparent validation. It increases the reviewer’s difficulty in assessing
the code to have check each instance to see if it breaks anything.

3.3.4 An example attack on universal verifiability

The universal verifiability of the system relies (largely) upon a chain of zero-
knowledge proofs. These proofs demonstrate that the announced result, for a
given ballot box, is the correct decryption (and permutation) of that ballot box
(which is here used to refer to an agreed upon collection of ciphertexts).

The vulnerability underlying the attack below is as follows: the verifier is
inconsistent in how it extracts data from the disk; this inconsistency breaks the
chain of zero-knowledge proofs. Specifically, it sometimes extracts data based
on the filename/location of the data and sometimes based on the content of the
data. The inconsistent data could plausibly have been detected by the following
parts of the verification specification to varying degrees but the implementation
does not prevent the exploitation of the vulnerability:

� The authentication checks could plausibly have helped. However, they
take the context data as input from the signer, in this case the adversary,
rather than check based on their own view of the context.

� No consistency check is performed that each online control component has
contributed exactly one shuffle payload per ballot box.

Attack: We will assume below that the auditor and control component 1 are
honest but all other control components are dishonest.

The attack works by altering the order and names of the shuffle payloads
going to the verifier. The result of this reordering is that the online control
components’ shuffles will verify as expected BUT when the verifier attempts
to verify the tally control component’s payload it will NOT do this with re-
spect to the output of the CC4 as the verifier intends, but some other out-
put. In the example we provided to Post, the verifier checks the tally control
component shuffle of the ballot box 750a359fc3bd48aca4a1156666846267 with
respect to the (decrypted and permuted) output of CC1 for the ballot box
99208915ab634a4293e36fcf4efadf54. This means that the validity of the tally
proofs no longer link the results for 750a359fc3bd48aca4a1156666846267 to its
own ballot box but to that of 99208915ab634a4293e36fcf4efadf54.

We initially thought the attack would not work because, for technical rea-
sons, the mismatched input must be from control component 1, 2, or 3. In other

18

words, the dishonest tally control component’s proof would be verified with the
wrong input ciphertexts but would ultimately result in garbled group elements
which would be detected by the VerifyProcessPlaintextsAlgorithm. We realised
later that the adversary could choose the secret keys of the dishonest control
components such that they cancel each other out and the decryption of the
ballots using the secret keys of the first control component and election board
would have the same result as decrypting using all keys. This means that this
verification should then pass.

Impact The attack allows the adversary to change the election result without
detection by the voter or system. The limitation on the attack is that the result
the adversary claims, with respect to a given ballot box, must have a relationship
to the ballots cast in a different ballot box. The impact of the attack depends
significantly on the election parameters but it seems likely it could be exploited
in practice.

Resolution Our understanding from talking with Post is that they will ad-
dress this by using consistency checks to ensure the file names and contents
have the expected correspondence. This approach would seem to work but we
encourage any such requirement to be documented in the verifier specification
or architecture document.

3.3.5 Other observations

� The setup component (re)learns the verification ids from the CCRs and
checks consistency, this seems fine as long as at least one CCR is honest.

� VerifyPrimesMappingTableConsistency does not check the same Prime
does not represent multiple options. This concrete issue subsumed by
wider issue around the handling of the Primes Table discussed in scope 1.

� The completeness check in the tally phase of verification would not catch
missing ballot boxes but this would be caught by the consistency check.

3.4 Detailed comment

In this section we will make comments on Ordinance requirements as applicable.

3.4.1 d) Assess the alignment between software development prod-
ucts

24.1.9, Traceability between functional specifications and security re-
quirements is guaranteed to interface level.
This requirement is currently not satisfied for the reasons discussed in scope 1.

19

24.1.11, Traceability between the entire source code and the specifi-
cations of the security functions is ensured and their correspondence
is evident.
This requirement is currently not satisfied for the reasons discussed in (Sec.
3.3.3).

25.1.3, A description must be provided of the link between the legal
requirements and the cryptographic protocol, the specifications and
the documentation of the architecture.
We have conducted no analysis with respect to this requirement to date.

25.2.8, The cryptographic protocol, specification, design and source
code are aligned.
This requirement is currently not satisfied for the reasons discussed in (Sec.
3.3.3).

3.4.2 e) Assess the implementation of the protocol

2.5, Individual verifiability
We have made some small preliminary investigations into the system’s compli-
ance with this requirement; we have nothing to report so far.

2.6, Universal verifiability
We have made some small preliminary investigations into the system’s compli-
ance with this requirement; the system does not comply with this requirement
for the reasons discussed in (Sec. 3.3.4).

2.7, Preserving voting secrecy and excluding premature partial re-
sults
We have made some small preliminary investigations into the system’s compli-
ance with this requirement; we have nothing to report so far.

2.8, Effective authentication
We have conducted no analysis with respect to this requirement to date.

2.12.1, Only one vote can be cast with the authentication credentials
assigned to a voter.
We have conducted no analysis with respect to this requirement to date.

2.12.2, The person voting enters their vote on the user device
We have conducted no analysis with respect to this requirement to date.

20

2.12.3, The person voting can change the vote up to the point of
confirming the decision to cast it and can check the vote against a
summary.
We have conducted no analysis with respect to this requirement to date.

2.12.4, After the person voting has had the opportunity to check the
vote against the summary, he or she confirms on the user device that
he or she wants to cast the vote as entered
We have conducted no analysis with respect to this requirement to date.

2.12.5, The proofs of correct voting under Number 2.5 must be di-
vided into at least two sequential items of proof. Any indication
presented as an item of proof must make a genuine contribution to
the soundness of the proof referred to in Number 2.5.
We have conducted no analysis with respect to this requirement to date.

2.12.6, The user device displays the first item of proof to the person
voting after he or she has confirmed on the user device that he or she
wants to cast the vote.
We have conducted no analysis with respect to this requirement to date.

2.12.7, The user device will not display the next item of proof to the
voting person until the voting person has entered into the user device
that the previous item of proof is correct.
We have conducted no analysis with respect to this requirement to date.

2.12.8, By confirming that the penultimate item of proof is correct,
the voting person confirms his or her decision to cast the vote defini-
tively.
We have conducted no analysis with respect to this requirement to date.

2.12.9, The group of control components registers the vote as having
been cast in conformity with the system when it has received confir-
mation of the definitive decision to cast the vote.
We have conducted no analysis with respect to this requirement to date.

2.12.10, When the person voting has checked the last item of proof as
being correct, the voting process is complete. The last item of proof
should be made particularly easy to check, by limiting the check as
far as possible to the correct display of a single code or other simple
indication.
We have conducted no analysis with respect to this requirement to date.

21

2.12.11, If voting data are imported, a setup component or a print
component must no longer be considered trustworthy from that point
on.
We have conducted no analysis with respect to this requirement to date.

3.17 Trustworthy components may perform only the intended opera-
tions.
We have conducted no analysis with respect to this requirement to date.

25.1.2 All cryptographic protocol requirements across all work prod-
ucts associated with the software development process must be trace-
able.
This requirement is currently not satisfied for the reasons discussed in (Sec.
3.3.3).

3.4.3 f) Assess the functionalities

3.13, Data exchange or storage media, such as USB flash drives, must
be removed after the data has been uploaded to the trustworthy com-
ponents and may only be reused before the data is destroyed if there
was no critical data on the trustworthy component before the data
was uploaded. Data exchange or storage media must be reformatted
and any data on them must be destroyed before they are used with
the aid of a component operated in accordance with the requirements
for trustworthy components.
We have conducted no analysis with respect to this requirement to date.

2.11.1 The probability of the attacker being able to falsify a proof
under Number 2.5 if he changes a partial vote, suppresses a partial
vote or casts a vote in someone else’s name must not exceed 0.1%.
We have conducted no analysis with respect to this requirement to date.

2.11.2 The probability of the attacker being able to falsify a proof un-
der Number 2.6 if he causes the calculated result to deviate by 0.1%
from the correct result by altering and suppressing votes cast in con-
formity with the system or by entering votes not cast in conformity
with the system may not exceed % per proposal, list or candidate
selection.
We have conducted no analysis with respect to this requirement to date.

2.11.3 If the probability of the attacker being able to falsify a proof
under Number 2.6 is not negligible in the cryptographic sense, it must
be possible to reduce the probability of success as desired by repeated
tallying, by providing the auditors with an additional, independent

22

proof under Number 2.6 for each count.
We have conducted no analysis with respect to this requirement to date.

4.1, The person voting must declare that he or she is aware of the
rules on electronic voting and of his or her own responsibilities.
We have conducted no analysis with respect to this requirement to date.

4.2, Before casting a vote, the person voting is notified that he or she
is taking part in a ballot in the same way as voting by post or voting
in person at the ballot box. The person voting may only cast his or
her vote after confirming that he or she has taken note of this.
We have conducted no analysis with respect to this requirement to date.

4.3, When voting, the person voting is requested to check the proofs
in accordance with Number 2.5 against the verification reference and
to report any doubts as to its correctness to the canton
We have conducted no analysis with respect to this requirement to date.

4.4, At any time before casting an electronic vote definitively, the
voter may still choose to cast his or her vote via a conventional voting
channel.
We have conducted no analysis with respect to this requirement to date.

4.5, The client-side system as it appears to the person voting does not
influence the person voting in his or her decision on how to vote.
We have conducted no analysis with respect to this requirement to date.

4.6, The user guidance must not lead persons voting to cast hasty or
ill-considered votes.
We have conducted no analysis with respect to this requirement to date.

4.7, The system does not offer the person voting any functionality
allowing them to print out or store their vote
We have conducted no analysis with respect to this requirement to date.

4.8, The person voting is not shown any information after the voting
process is completed about the content of the vote that has been
encrypted and cast.
We have conducted no analysis with respect to this requirement to date.

4.9, A voter who is unable to cast a vote because third parties have
cast a vote using his or her voting papers unlawfully may still be
allowed by the canton to vote provided the canton declares the un-
lawfully cast vote null and void. Voting secrecy in accordance with

23

Number 2.7 must be preserved.
We have conducted no analysis with respect to this requirement to date.

4.10, Voters with disabilities may be provided with a simplified pro-
cedure for checking the proofs. Only in such a case are derogations
from the requirements set out in Number 2.9.1 permitted.
We have conducted no analysis with respect to this requirement to date.

4.11, As long as the system has not registered confirmation of a defini-
tive electronic vote, the voter may still choose to cast his or her vote
via a conventional voting channel.
We have conducted no analysis with respect to this requirement to date.

4.12, The use of a means of authentication independent of electronic
voting is permitted. Effects on the integrity of the verification of the
right to vote and the preservation of voting secrecy must be examined
in detail as part of the risk assessment.
We have conducted no analysis with respect to this requirement to date.

5.1, If the electoral register data is imported from a third-party sys-
tem that is outside the canton’s control, the data must be encrypted
and signed. The signature must be verified on receipt of the data.
For delivery to the printing office, the provisions of Number 7 take
precedence.
We have conducted no analysis with respect to this requirement to date.

8.11, The information essential for secure voting is sent with the
voting papers. Voters are told that if in doubt, they should comply
with the information in the voting papers rather than the information
displayed on the user device.
We have conducted no analysis with respect to this requirement to date.

9, The electronic voting channel is only available during the permitted
period.
We have conducted no analysis with respect to this requirement to date.

10, Votes not cast in conformity with the system are not stored in
the electronic ballot box.
We have conducted no analysis with respect to this requirement to date.

11.1, The decryption of the votes and the tallying may not begin
before Polling Sunday
We have conducted no analysis with respect to this requirement to date.

24

11.5, If the result data is transmitted to a third-party system that
is outside the canton’s control, the data must be encrypted and
signed.
We have conducted no analysis with respect to this requirement to date.

11.6, The system allows the polling card to be used to determine
whether someone has cast an electronic vote.
We have conducted no analysis with respect to this requirement to date.

25.7.2, The software must be user-friendly. The user guidance is
based on generally familiar schemes.
We have conducted no analysis with respect to this requirement to date.

25.7.3 The client-side system as it appears to the person voting com-
plies with Accessibility Standard eCH-005913, with the exception of
the requirements for alternative communication forms in Chapter 2.4
of the standard. The cantons shall ensure that compliance is con-
firmed by a specialist entity.
We have conducted no analysis with respect to this requirement to date.

3.5 Future work

Currently left as future work is a proper evaluation of the software with respect
to the requirements detailed in Table 1. We intend to start with requirements 2.5
(Individual verifiability), 2.6 (Universal verifiability), 2.7 (Privacy); we envision
that our addendum will provide good analysis of compliance with the above
three requirements but we expect that we will not be able to examine most of
the other requirements in this time frame.

25

References

[1] Swiss Federal Chancellery. Federal Chancellery Ordinance on Electronic Vot-
ing (OEV). https://www.fedlex.admin.ch/eli/cc/2022/336/en, July
2022.

[2] Swiss Post. Cryptographic Primitives of the Swiss Post Voting System
– Pseudo-code Specification. https://gitlab.com/swisspost-evoting/

crypto-primitives/crypto-primitives, June 2022.

[3] Swiss Post. Protocol of the Swiss Post Voting System – Computa-
tional Proof of Complete Verifiability and Privacy. https://gitlab.com/

swisspost-evoting/e-voting/e-voting-documentation, July 2022.

[4] Swiss Post. Swiss Post Voting System – Crypto-primitives Source Code.
https://gitlab.com/swisspost-evoting/crypto-primitives, 2022.

[5] Swiss Post. Swiss Post Voting System – Source Code. https://gitlab.

com/swisspost-evoting/e-voting/e-voting, 2022.

[6] Swiss Post. Swiss Post Voting System – System Specification. https://

gitlab.com/swisspost-evoting/e-voting/e-voting-documentation,
June 2022.

[7] Swiss Post. Swiss Post Voting System – Verifier Source Code. https:

//gitlab.com/swisspost-evoting-int/verifier/verifier, 2022.

[8] Swiss Post. Swiss Post Voting System – Verifier specification. https://

gitlab.com/swisspost-evoting/e-voting/e-voting-documentation,
August 2022.

26

