
Second Addendum on the Swiss Post e-Voting

System∗

Thomas Haines, Olivier Pereira, Vanessa Teague
thomas@hainest.com, olivier.pereira@uclouvain.be, vanessa.teague@anu.edu.au

February 13, 2023

Contents

1 Summary 2

2 Update on Scope 1 2
2.1 Alignment between security model required by Ordinance and

one used in proofs . 3
2.1.1 Role of auditors . 3
2.1.2 Roles of tally control component and electoral board . . . 3
2.1.3 Weakness in the security definitions 4

2.2 Missing elements in verifier specification 4
2.3 Context verification . 5
2.4 Vote confirmation agreement . 6
2.5 Security reductions and their underlying assumptions 8

2.5.1 Extraction of secrets . 8
2.5.2 On IND-CPA security . 10
2.5.3 What is constant? . 11

3 Update on Scope 2 11
3.1 Undocumented architecture decisions 11
3.2 Unvalidated inputs . 12
3.3 Update on attack on UV . 15
3.4 Update on possible attack on IV 15

4 New issues 15
4.1 Problem with KDF . 15
4.2 Error logging . 15

∗This is a slightly expanded version of our original second addendum

1

1 Summary

The system continues to improve and the December 2022 release fixes many of
the outstanding issues, but not all. The system has reached a level of maturity
where we no longer readily find exploitable vulnerabilities in the code by looking
in the obvious places. From our perspective, the main risk which might result
in the system not offering the security required by the Ordinance is the ad-
hoc nature of the mitigations; the system has been patched significantly during
the review process and now protects against the attacks we, and others, have
found. However, it is not clear that the system does provide the required level
of security consistently, especially when considering edge cases where normally
trusted components are untrusted; for example, universal verifiability where the
setup component is untrusted.

The security proofs have also been vastly revised, documented, and improved
in the December 2022 release. While some proofs can now be evaluated thanks
to being sufficiently documented, this is not the case of others that have not
been revised in the same way. The security reductions that have now been
added in some places are particularly important for the evaluation. However,
this task remains largely ongoing: the latest changes in the protocol remain
only partially reflected in the security proofs and, whenever security reductions
are available, we found difficulties/gaps in the proposed arguments. In both
cases, we suspect that lemma/theorem statements will need to be revised. The
problems we found fortunately do not seem to translate into attacks against
the system. But, it is most likely that similar issues arise in the other security
proofs where reductions remain currently unavailable, and their impact is hard
to predict. As such, we cannot say that the security proofs bring the level of
confidence that they should provide.

All documents referred to in this report belong to the December 2022 release
unless otherwise clarified.

2 Update on Scope 1

There has been much improvement within Scope 1, particularly to the amount
of detail given about game hops in the proof document. There have also been
improvements to the other documents, but gaps remain and are discussed later
in this section. The main outstanding issue with regards to Scope 1 is, in our
opinion, the compliance with requirement 2.14.1 of the Ordinance.

2.14.1 A symbolic and a cryptographic proof of compliance must
demonstrate that the cryptographic protocol meets the requirements
in Numbers 2.1–2.12.

We will discuss why we think the cryptographic proof does not demonstrate the
compliance of the protocol with the requirements below.

2

2.1 Alignment between security model required by Ordi-
nance and one used in proofs

The quality of the proof document version 1.1.0 has vastly improved over version
1.0.0. We will not provide an exhaustive list of all the improvements but will
focus on the remaining issues.

2.1.1 Role of auditors

We have questioned if the use of the Auditors in the setup phase of the system
is in line with the Ordinance. Post’s most recent response was,

We agree that future versions of the protocol could delegate more
verification work to the control components. However, we believe -
after discussion with the Federal Chancellery and the cantons – that
we can use the auditors to check the configuration phase’s proofs
and that our current protocol is in line with the Ordinance.

We still cannot see how the use of the auditors in the system aligns with the
written text of the Ordinance; the communication channels described in 2.2 for
example don’t seem to allow this use. A similar issue is noted, see quotation
below, in Section 11.4 of the proof document, which notes that the privacy game
assumes a trusted Auditor even though this contradicts the Ordinance.

The computational models for individual verifiability and vote pri-
vacy assume a faithful execution of the VerifyConfigPhase algorithm.
However, this assumption does not align with the trust model for
individual verifiability (see section 2.2) and vote privacy (see section
2.4), which assume a trustworthy setup component, but an untrust-
worthy auditor. . . The cantons run the setup component and the
verifier in a similar, secure offline environment. Thus, we consider
the verifier and the setup component equally secure and trustworthy
in the configuration phase.

We consider there to be a clear discrepancy as Post acknowledges in their docu-
ments. It remains unclear to us how the auditors will be chosen and will operate;
this being a Cantonal responsibility the Ordinance and system are both fairly
vague on the details. Our concern here remains that the threat model is unclear
at this point, as is the distinction between the Auditors and Setup Component;
we note for example Figure 22 and more generally Section 7.2 of the architec-
ture document which seems to suggest that the Verifier, Setup Component, and
Tally Control Component are all controlled by the canton. Given the crucial
role of both the Setup Component and Auditors in the system, we suggest that
bringing clarity to this issue would be of value.

2.1.2 Roles of tally control component and electoral board

We had previously noted the inconsistencies in the treatment of the Tally Con-
trol Component and Electoral Board in the proof document. This has now been

3

clarified with the new version of the proof document saying:

For voting secrecy, we model the tally control component, together
with the Electoral Board, as a single Control Component.

This model is consistent with the proofs but provides a substantial weakening
of the claimed security property. By modeling the Tally Control Component,
together with the Electoral Board, as a single Control Component the analysis
only considers what happens if all these parties are honest and not what happens
when some of these parties misbehave but others don’t. For example, if the
Electoral Board or the Tally Control Component is honest, but not both, then
the system does not provide privacy.

2.1.3 Weakness in the security definitions

There remain many points where details of the system (even at the specification
level) have been simplified out of the security models and proofs. We summarise
a few below:

Chunking The setup phase is run in chunks rather than all at once as the
proof assumes; Specifically, algorithms 4.3 GenVerDat and 4.4 GenEnc-
LongCodeSharesj are called several times, on a subset of eligible voters
each time. The results are then combined before algorithm 4.5 Combi-
neEncLongCodeShares is called. This means that some tables and allow
lists are sorted on a per chunk basis rather than globally as the proof
model assumes; this does not appear to break anything in practice.

Verification Card Sets Both the specification and proof do not adequately
capture that multiple verification card sets with different voting rights
are being processed at the same time. For example, in the definition
of CompliantVote both the correctness id and allow list depend on the
verification card set id, but this is not made explicit.

This simplification also has an impact on privacy; the proof document
presents a definition which shows that the system does not leak much
more than the set of all confirmed votes, but depending on how the ballot
boxes are set up, these sets (of votes) may be tiny. We are insufficiently
familiar with the current status quo in Swiss elections to evaluate the real
world impact of this but we encourage it to be carefully considered.

2.2 Missing elements in verifier specification

In our previous reports we mentioned missing elements in the verifier specifi-
cation; we were particularly concerned around the lack of description of the
manual checks the auditor was required to do and the resulting security vul-
nerabilities if these checks were not completed. Post has addressed this by
adding algorithm 0.01 which specifies (informally) the checks the auditors need
to manually perform.

4

The current list of manual verification checks seems to be heading in the right
direction but is too rough and informal to be evaluated for security. We would
like to see an algorithm which clearly specifies where the inputs come from and
what checks are required; for example, what specific fields in what files need
to be checked and what checks need to be made on those fields. It would be
particularly useful to be clear about what inputs come from the existing files
and what manual information the auditors need to receive in order to complete
the checks.

2.3 Context verification

In our most recent report we summarised our position on input and context
verification by saying:

We would...encourage making clear what the source of the input is
supposed to be and any corresponding consistency checks but the
main step forward require(d) is to ensure the code actually...does
ensure the context comes from a trusted source.

We received the following specific responses from Post:

We improved all the mentioned algorithms and made sure that the
context variables stem from a trusted source. Moreover, we imple-
mented a validation of all identifiers (electionEventID, verification-
CardSetId, BallotBoxId, verificationCardId) in the control compo-
nents and the setup component.

That would certainly be a good step forward and we will comment on the current
status of the context and input verification in Section 3.2. In addition, Post has
said:

The GenKeysCCR algorithm is the first algorithm of the control
components to receive the encryption parameters. Hence the control
components cannot validate them at this point. However, they will
use the same encryption parameters in all subsequent algorithms.

This appears to be a fairly clear problem, albeit one with the documentation
rather than the code. If the algorithm is not intended to receive the input from
a trusted source or an internal view then it should be listed as input not context,
or at least marked in some way as inconsistent with the norm; Algorithm 4.1
still lists this as context.

In summary, we consider there to be room for significant improvement in
describing the source and verification checks of context and input in the pseu-
docode algorithms; however, the more pressing issue is to ensure that the code
actually does perform the explicit checks and the more obvious (currently im-
plicit) consistency checks. We will comment on the status of the code issue in
Section 3.2 of our update on Scope 2.

5

2.4 Vote confirmation agreement

In our most recent report we expressed concern about the informal description
of the agreement process in the event that the CCRs have different views of
which votes have been confirmed. This has been substantially improved in the
new release.

The main changes are:

• a new trusted role, the dispute resolver, described in Section 6.2.7 of the
system specification and referred to in Section 12 of the Computational
Proof,

• a much clearer description of the dispute resolution process, in Section 6.2.7
of the system specification,

• a much simpler verification step (8.01), which simply says that the verifier
checks that the set of confirmed votes is identical for all CCRs,

• improvements to the proof, to adapt it for these changes.

Although the changes seem reasonable, and we cannot see any way for the
system’s security goals to fail at this point, the specification and proof still need
improvement in order to be convincing.

The specification Although the main idea of the ConfirmVoteAgreement

algorithm seems correct, the exact follow-on process needs to be more carefully
specified. Does the dispute resolver return the output to the CCRs, and do they
update their copy of LconfirmedVotes? We assume so, but it doesn’t explicitly
say. Is the dispute resolver obliged to provide evidence of proper inclusion
to the CCRs, in the form of the hlVCCid,j values? Should the CCRs check
them? If a CCR has included a certain vote in LconfirmedVotes but hears from
the dispute resolver that it should not be confirmed, should it remove it, even if
it has received the evidence? We acknowledge that some of these cases may be
unreachable for a perfectly trustworthy dispute resolver, but we are not certain.
The CCRs’ algorithm for receiving information from the dispute resolver and
updating their state should be specified.

The proof Theorems 2 & 3 (the proofs against vote insertion and deletion by
breaking the confirmation process) do not exactly prove the right thing, i.e. that
the vote cannot be included if it has not been confirmed, and cannot be rejected
if it has been confirmed. They need to be extended to do so, by referring to
the dispute resolution process and the unanimity required by the verification
spec. The current changes are a good start, but suffer a little from confusion
(at least our confusion) about whether the lists of confirmed votes are explicitly
updated after the agreement process. For example, it isn’t clear whether the
bad conditions badrej and badinj refer to the honest control component’s list of
confirmed votes before or after the dispute resolution.

6

To take one concrete example, suppose someone comes along later and de-
cides on a flawed dispute resolution process: take a simple majority’s view on
whether the vote was confirmed, without examining the evidence. Then (we
think) Theorems 2 and 3 remain true if we interpret badrej and badinj as ap-
plying to the honest CCR’s state before the confirmation process. However, the
vote could be accepted or rejected inappropriately (by 3/4 majority) even if the
bad cases defined in the Theorems never happen. Conversely, if we interpret the
bad events as applying after the dispute resolution process, the bad events could
certainly happen with the flawed dispute resolution process: the honest CCR
could be persuaded to change their mind because the majority said otherwise.
This is why the dispute resolution process needs to be a part of the proof, and
why it is critically important to clarify whether the bad events refer to the state
before or after dispute resolution. (In Theorem 3, the proof clearly refers to the
dispute resolution process, but the game in Figure 31 does not model it.)

Currently the vote insertion and vote rejection games do not model the ad-
versary’s opportunity to attempt to disrupt the dispute resolution process, but
they should. For example, the adversary might send different values to the dis-
pute resolver from those it sent to honest participants during the ConfirmVote

execution.
One approach would be to split each proof (vote insertion and vote rejection)

into two distinct steps.
The first step (for Theorem 2 and 3 respectively) would interpret the bad

event (badrej and badinj respectively) as applying to the honest CCR’s state
before dispute resolution. The Theorem statements and proofs would be quite
similar to their current form (without the references to the Section 12 dispute
resolution process). They would not model the dispute resolution process, in-
stead arguing about the security properties of the ConfirmVote protocol as they
currently do. (It might work better in the case of Theorem 3 to define badinj as
the event in which the voter did not confirm the vote and any CCR got enough
evidence to prove to the dispute resolver that the vote should be included.)

The second step would be to explain why the dispute resolution process
implies that the right consensus prevails. A possible pair of bad events would
be:

• for rejection, that the voter successfully confirmed, but the dispute re-
solver did not cause the vote to be unanimously accepted by all 4 control
components (and verification passed),

• for injection, that the voter did not confirm the vote, but the dispute
resolver caused the vote to be unanimously accepted by the CCRs (and
verification passed).

This argument would involve a game that explicitly allows the adversary to
attack the resolution step. It would reference ConfirmVoteAgreement to prove
that the impossibility of these bad events follows from Theorems 2 and 3.

An alternative proof strategy would be to keep the argument as it is, but
update the games in the preambles to Theorems 2 and 3 to include the dispute

7

resolution protocol.
Typos: at the bottom of Algorithm 6.9, SendVoteAgreement in the Sys-

tem specification, we think the Output should be > if the vote was sent, (not
confirmed).

2.5 Security reductions and their underlying assumptions

In our previous reports, we pointed out the need to produce more explicit secu-
rity reductions proving the indistinguishability between security games: we were
often trying to guess how these reductions would work and, in several places,
we just could not see how to support the security statements that were made.

The latest Proof document shows major improvements here: proofs have
been modified in many places, addressing the specific concerns that we raised
about their validity, and the reductions that are now proposed for some of the
proofs are much more detailed.

We think that these changes are of major importance as it now makes it
possible to review proofs that were essentially infeasible to review before, and we
believe that pursuing the work in this direction would be vital in order to address
the requirement of the Ordinance regarding the existence of a computational
security proof.

The currently proposed reductions still raise difficulties: some of them are
related to issues that we discussed previously, some of them only appeared now.
We review below the proof of Lemma 1. The proof of this lemma has 4 games,
and reductions are proposed for 3 of these games. We found difficulties in all 3
reductions. Fortunately, all of these difficulties seem to be reasonably easy to
solve.

However, most of the other proofs are much less detailed and follow similar
patterns, so we suspect that similar problems will appear. As long as the re-
ductions are not written, it will not be possible to assess whether they will be
as easy to solve, or if they will rather lead to the discovery of real protocol vul-
nerabilities, as it is often the case when one examines the intricacies of security
proofs.

2.5.1 Extraction of secrets

In our report dated March 24, 2022,1 we raised concerns, on page 15, that:

It is unclear why the extraction of the secret keys from the adver-
sarial CCRs can work as it is described. Extraction is assumed to
work for one proof, but this may not be enough to guarantee that it
can be performed for many proofs.

The Proof document now offers considerably more discussions regarding
this issue, including in Sections 13.2 and in the reduction of Game rMTC.1
on page 72.

1https://www.newsd.admin.ch/newsd/message/attachments/71147.pdf

8

About the proposed extraction strategy However, we do not believe that
the extraction strategy that is explained in the latest Proof document works.

Our understanding of the proposed strategy is as follows: there are NE proofs
to be extracted (2 · NE · (m − 1) proofs, more precisely, which is even more
demanding, but we simplify a bit here), and the witnesses of these proofs are
extracted one by one, in the order in which the adversary queried the random
oracle in order to make these proofs. The extraction itself proceeds, for each
proof, by rewinding the adversary to the point at which the RO query with
the commitment of that proof was made, provide a different answer to this
RO query, and extract from the corresponding response (given that one can
extract the secret from two transcripts that share the same commitment but
have different challenges).

We, however, believe that this extraction strategy will fail with overwhelming
probability when NE grows, rather than with negligible probability, as would be
needed for the proof.

Consider the following basic example as an illustration of the problem that
can happen. Suppose that, when the adversary computes a ZK proof, it decides
to complete that proof only if it received from the RO a challenge ending with
10 bits set to 0 (or, more generally, log(λ) bits set to 0, where λ is the security
parameter – of course, the condition based on which the proof will be completed
can be much more complex and unknown to the extractor). Concretely, every
time the adversary needs to compute a proof, it repeatedly picks random com-
mitments and queries the RO on these commitments until it gets a challenge of
the expected form, and completes the proof in that case only.

As a result, a single rewind of the adversary, in which the challenger provides
a fresh random answer to the adversary’s RO query, will result in the adversary
completing the proof on the same commitment with a probability 1/1024 (or
1/λ in the more general case).

This is already quite far from the overwhelming probability that would be
needed in the proof. However, it gets much worse when we need to extract NE
proofs. Indeed, since the adversary could very well choose his commitment for
each proof as a function of the challenge that it received for the previous one,
each single proof requires its own rewinding step (as it is already done in the
current proof outline). As a result, the probability of a successful extraction of
all the proofs with a single rewind per proof becomes 2−10NE (or λ−NE), which
decreases exponentially fast with NE and would simply never happen as soon as
we have more than half a dozen voters.

We expect that this issue can be solved by increasing the number of rewinds.
Here is a sketch of how this could go (we did not check the details). Suppose
that we have an adversary that, on a random challenge, completes a proof with
probability p, and assume that p is lower bounded by some polynomial inverse
in the security parameter λ. If we rewind a single proof λ/p times, we will be
able to extract at least once with a probability 1 − (1 − p)λ/p ≈ 1 − e−λ when
p → 0 (remembering that limn→∞(1 + x/n)n = ex). So extraction would fail
with probability ≈ e−λ, which is negligible.

The second step is that one needs to successfuly extract NE proofs. If we

9

repeat the same process NE times, the probability that we extract every time
would again be taken down to (1−e−λ)NE . If NE were a constant, then we should
be asymptotically ok. Further adjustments on the number of rewinds may be
needed when NE is considered to be polynomial in λ (we did not check).

Moving forward We essentially see two ways of moving forward here:

1. Either an extraction strategy can be fleshed out, possibly inspired from
the one outlined above, and then a complete proof of extraction can be
made, resulting in revised security bounds in Lemma 1. We note that
this strategy does not make any use of the weak simulation extractabil-
ity (WSE) property of the proof. More generally, it may question the
usefulness of the WSE definition in the document, and may suggest the
introduction of specific lemmas explaining how to extract from multiple
ZK proofs in Section 7.

2. Alternatively, the authors may wish to stick to strategies based on the
WSE property discussed in Section 7. However, the reduction should then
be based on the WSE definition, which is not the case here (as it directly
explains the underlying rewinding strategy). It should also be explained
why the security bounds resulting from the use of WSE are negligible.

2.5.2 On IND-CPA security

In various places, the IND-CPA security of ElGamal is used. We are not sure
of what definition of IND-CPA security is used: there are a few equivalent ones
in the literature, and it sometimes looks like different versions are used within
the Proof document.

For instance, the statement of Lemma 1 has a factor 2 · NE next to the
IND-CPA bound, which is what one would expect when the standard IND-CPA
security notion is used (i.e., the single challenge one, as found on Wikipedia or
in the Katz-Lindell textbook for instance) and there are 2 · NE messages from
which the adversary can distinguish. The multiplicative factor then comes from
the so-called hybrid argument that is used to adapt from a single challenge to
multiple challenges.

But, in Game rMTC.3, the reduction B seems to query the IND-CPA oracle
with multiple pairs of messages. This is not consistent with a single challenge
definition, and suggests that a multi-challenge one is used. But, if a multi-
challenge definition is used, then we wonder why the 2 · NE factor would be
needed in the Lemma statement.

We would suggest to state the IND-CPA security definition that is used in
the Proof document, possibly in Section 3, and to make sure that it is used
everywhere.

10

2.5.3 What is constant?

Related to the previous observation, we find it surprising to see that, in the
reduction made for the rMTC.4 game for instance, no hybrid argument is used
to build the reduction. As it is, the reduction looks correct if NE is constant.
The common practice in the literature seems rather to consider that NE may
grow with the security parameter: more voters prompt for a larger security
parameter. However, if NE is not constant, then the argument proposed in the
Proof document appears to become incorrect – see for instance the discussion
in https://eprint.iacr.org/2021/088.pdf in order to see why.

We would suggest adapting the proofs to a setting in which NE may be
polynomial (or to argue otherwise).

3 Update on Scope 2

We provide an update below on various issues within scope 2. In summary,
the implementation has matured past us readily finding exploitable vulnera-
bilities but we have not had time to systematically review the security of the
implementation.

We have carefully looked for many common issues in the code and spent sig-
nificant time carefully following the logic of certain security requirements. Many
important improvements have been made in response to our feedback. However,
the implementation of the system involves 10 micro-services taking responsibil-
ity for various parts of the protocol across the Setup Component, Online Control
Components, and Tally Control Component; in addition, there are 51 verifica-
tion tasks within the verifier each containing a multitude of checks. By our
count, there are dozens of stateful services between the various components—
which manage databases and file repositories. In the context of this complexity,
we have assumed that much of the underlying services are appropriately imple-
mented without systematic checking.

3.1 Undocumented architecture decisions

In our previous report we commented that

There are numerous architecture decisions which have been made
which have various advantages and disadvantages. This is to be
expected but we think many of (the) decisions should be better de-
scribed in the documents to ensure a clear view, particularly of the
disadvantages. In our previous report we highlighted micro-services
(which describes both the online system and the verifier)...this has
not been addressed.

Post has now undertaken to address this by updating the architecture document;
we understand that Section 9.1.2 and 9.2.3 are the main updates to reflect this.

E-voting systems have traditionally been developed as fairly monolithic ap-
plications; reviewers and auditors have got used to the kinds of vulnerabilities

11

which occur in such systems. There are many advantages to using micro-services
over monolithic applications, but they may introduce new errors which were un-
common or unknown in the monolithic systems. Since reviewers most readily
find errors of kinds they are most familiar with, we consider this change in ar-
chitecture style to be a significant point of risk (though not an unwarranted
one).

Post has done a good job of highlighting the advantages of the approach in
the architecture document; however, the drawbacks in terms of security are only
partially considered. For example, the attack on UV described in our previous
report (about which we provide an update on Section 3.3) would have been
very unlikely to occur if the data was read in once and then passed in memory
through to the various verifier checks. There is some discussion of the security
mechanisms required to address this sort of issue (for example, exactly once
processing) but this discussion is ad-hoc and does not seem to systematically
consider the possible security implications.

We consider the main risks of the use of micro-services to be:

• ensuring appropriate state between the services,

• ensuring consistency between the input to the services,

• and the lack of familiarity of the reviewer with the common pitfalls and
countermeasures in this approach.

A semantic discussion of how state is managed and input consistency is assured
would help to mitigate these risks.

In summary, while improvements have been made to the architecture docu-
ment they are largely orthogonal to our main concern; specifically, the analysis
of the security implications is not sufficiently systematic and detailed to con-
vincingly show that the risks arising from this decision have been mitigated.

3.2 Unvalidated inputs

In our previous report we commented in some detail on the input validation of
various of the algorithms; we provide an update on the these issues below. We
focus our discussion on the three main points:

• Does the context “stem from a trusted source (for instance an internal
view or a trusted component”?

• Does the implementation “check the input variables against the context”?

• Does the implementation “ensure the validity of the identifiers and in-
dices”?

Alg. 4.1 GenKeysCCR and Alg. 4.9 SetupTallyCCM The encryption pa-
rameters and election event id are listed as context in Alg. 4.1 but do not
come from a trusted source; this is a discrepancy between the specifica-
tion and implementation. In our view they should either come from a

12

trusted source in the implementation or be listed as input in the specifi-
cation. Moreover, it is unclear to us why the encryption parameters are
input at all, since they are supposed to be (according to the specification)
deterministically derived from the name of the election event.

Alg. 4.4 GenEncLongCodeShares All contexts to Alg. 4.4 come from trusted
or internal views, though as we noted last time:

the encryption parameters were placed in local state after com-
ing from an untrusted party and hence should not really be
considered trusted.

In this case the issue is mitigated because the encryption parameters are
cross checked with the input from the Setup Component.

The implementation takes as input the verification card public keys but
this is not represented in Alg 4.4; this does not seem to matter as far as
we can tell.

Alg. 4.5 CombineEncLongCodeShares and Alg. 4.6 GenCMTable In our
previous report we commented that:

the verification card ids should be...checked as consistent within
the verification card set id.

This is now done through a method called verifyConsistencyChunk.

Alg. 4.7 GenVerCardSetKeys We had previously commented that:

It is not clear to us that GenVerCardSetKeys actually ensures
that pkCCR2

, pkCCR3
, pkCCR4

are actually φ long and not longer;
the underlying issue is that GroupVector reports element size as
the size of its first element without checking that all its elements
have the same size.

Post has correctly pointed out that, while this is true of the private con-
structor, all public methods to create GroupVectors do check that the
elements all have the same size.

Alg. 4.10 SetupTallyEB We had previously noted that:

The spec lists the maximum number of write-ins as part of the
input where similar parameters were considered context in other
algorithms, this seems to be an a minor error in the specification.

With the exception of the above, the other issues we raised seemed to have
been resolved.

Alg. 5.3 VerifyBallotCCR and Alg. 5.4 PartialDecryptPCC The main
change Post has made to the PartialDecryptService, which prepares the
input for these two algorithms, has been to add an identifier validator.

13

This validator at present is checking that all the ids (election, verification
card set, verification card) exist in the CCR’s local view. This is a good
start but it does not appear to address our major concern of inconsistency
between these values. We provide below Java code for the checks we
believe need to be added to the validation.

checkArgument (v e r i f i c a t i o nCa rdS e t S e r v i c e . g e tVe r i f i c a t i onCardSe t (v e r i f i c a t i onCa rdSe t I d) .
ge tE lec t ionEventEnt i ty () . ge tE lec t ionEvent Id () . equa l s (e l e c t i onEvent Id) ,
” V e r i f i c a t i o n card s e t and e l e c t i o n event not c on s i s t e n t . ”) ;

checkArgument (v e r i f i c a t i o nCa rdS e r v i c e . g e tVe r i f i c a t i onCard (v e r i f i c a t i o nCa rd Id) .
v e r i f i c a t i onCa rdSe t I d () . matches (v e r i f i c a t i onCa rdSe t I d) ,
” V e r i f i c a t i o n card and v e r i f i c a t i o n card s e t not c on s i s t e n t . ”) ;

The code above checks verification card set and election event match in
the CCR’s view, and the same for the verification card and set.

Alg. 5.5 DecryptPCC and Alg. 5.6 CreateLCCShare Adding the checks
suggested in the previous item to the identifier validator would also resolve
the issue we had with the input validation of these algorithms.

Alg. 5.9 CreateLVCCShare and Alg. 5.10 VerifyLVCCHash The iden-
tity validator is again used here and would be improved by our suggested
changes. Interestingly in this case the (input validator) checks are pre-
formed as part of the payload verification in the onMessage method of the
LongVoteCastReturnCodesShareHashProcessor; this is not entirely con-
sistent with the position of these checks in the cases above; we cannot see
a strong reason to prefer either convention.

Alg. 6.1 GetMixnetInitialCiphertexts, Alg. 6.2 VerifyMixDecOnline,
and Alg. 6.3 MixDecOnline These three algorithms are used by the
MixDecryptProcessor to handle requests it receives; this processor does
some validation but largely depends on the MixDecryptService to handle
the processing of requests. One of the changes Post has made is to explicit
check that the election event and ballot box correspond in the CCR’s view,
this is an excellent change.

Alg. 6.4 VerifyVotingClientProofs, Alg. 6.5 VerifyMixDecOffline, Alg.
6.6 MixDecOffline, and Alg. 6.7 ProcessPlaintexts

We would like to see an explicit comment about line 123 of MixOffline-
Facade to note that the code on the lines ensures that the ballot box and
election event match according to the electionEventContextPayload; at
present we are concerned that this check is implicit and may be acciden-
tally removed in the future.

In general it seems that the checks performed for these algorithms should
be adequate but we had some trouble following the source of some of the
data; for example, the data coming from the BallotTallyService.

In summary, with a few exceptions Post has fixed the issues with input
validation we were concerned about. It should, however, be noted that the

14

current approach is heavily reliant on the setup component as a ground source
of truth; if in the future the setup component is less trusted, then the issue of
input validation will again become a pressing concern.

3.3 Update on attack on UV

In our previous report we detailed an attack vector on universal verifiability
which centered around reordering and renaming shuffle payloads to cause the
verifiability chain to break. As we understand it, Post addressed this problem by
adding a check called VerifyFileNameNodeIdsConsistency; this, in combination
with the checks present in verification, prevent every variation of this attack we
can think of.

We consider this issue to be resolved.

3.4 Update on possible attack on IV

In our previous report we detailed a possible attack vector on individual ver-
ifiability. The issue was a lack of checks by the setup component that the
verification card ids received from the CCRs match those it sent out both in
order and content; this coupled with weakness in the verification which didn’t
detect this attack.

We suggested changes to VerifyVerificationCardIdsConsistency which Post
has now made; these changes prevent every variant of the attack we can think
of.

We consider this issue to be resolved.

4 New issues

We comment below on a few new issues we have detected since our last report.

4.1 Problem with KDF

Several of the algorithms, in cryptographic primitives specification, including
4.8, 4.9, 4.10, 4.12, and 4.13, take input strings which are supposed to be in the
Universal Coded Character Set according to ISO/IEC10646. However, unless
the input is restricted to UTF 8 it seems that the conversion from strings to
bytes performed by ConversionsInternal.stringToByteArray will result in col-
lisions since the “method always replaces malformed-input and unmappable-
character sequences with this charset’s default replacement byte array.” To our
knowledge this does not result in any exploitable vulnerabilities in the system
but we suggest being more careful about the input domain validation checks
and type conversions.

4.2 Error logging

In several cases the system has code like

15

i f (dec ryptVer i f . stream () . al lMatch (V e r i f i c a t i o n R e s u l t : : i s V e r i f i e d) &&
s h u f f l e V e r i f . stream () . al lMatch (V e r i f i c a t i o n R e s u l t : : i s V e r i f i e d)) {

return true ;
} else {

dec ryptVer i f . forEach (v e r i f i c a t i o n R e s u l t −>
LOGGER. e r r o r (v e r i f i c a t i o n R e s u l t . getErrorMessages () . g e t F i r s t ())) ;

return fa l se ;
}

This results in an UnsupportedOperationException if a subset of the checks
failed because the system tries to get error messages from passing verifications.
We suggest updating the code along the lines below so that only failing checks
have their error messages logged.

i f (dec ryptVer i f . stream () . al lMatch (V e r i f i c a t i o n R e s u l t : : i s V e r i f i e d) &&
s h u f f l e V e r i f . stream () . al lMatch (V e r i f i c a t i o n R e s u l t : : i s V e r i f i e d)) {

return true ;
} else {

dec ryptVer i f . stream () . f i l t e r (a −> ! a . i s V e r i f i e d ()) . forEach (
v e r i f i c a t i o n R e s u l t −>

LOGGER. e r r o r (v e r i f i c a t i o n R e s u l t . getErrorMessages () . g e t F i r s t ())) ;
return fa l se ;

}

16

