Addendum on the
Swiss Post e-Voting System

Thomas Haines, Olivier Pereira, Vanessa Teague

thomas@hainest.com, olivier.pereira@uclouvain.be, vanessa.teague@anu.edu.au

November 21, 2022

Contents
1 Summary 3
2 Update on Prior Issues in Scope 1 3

2.1 Alignment between the security model required by the Ordinance

and the one used in the security proofs 3

2.1.1 Roleofauditors. 3

2.1.2 Roles of tally control component and electoral board . . . 5

2.1.3 Authentication issues 5

2.1.4 Lack of zero-knowledge proofs for key generation 6

2.2 Missing elements in the verifier specification 6
2.3 Technical issues in the security definitions and proofs 7
2.4 Context Verification: Input vs. Context 9

3 Update on Prior Issues in Scope 2 10
3.1 Undocumented architecture decisions 10
3.2 Unvalidated inputs 11
3.3 Update on our proposed future work 12

4 New issues 13
4.1 Write-ins 13
4.2 Authentication oL 13
4.3 Missing Elements oo 13

A Attack on Universal Verifiability Update 15
B Possible Attack on Individual Verifiability 17

C Reasoning about individual verifiability 18

C.1 Definitions e 18

C.2 Assumptions 18

C.3 No confirmed votes without submission of confirmation code from
thevoter. 19
C.3.1 The secrecy of the ballot confirmation code 19
C.3.2 That the honest component saw the conformation code . 19

1 Summary
In summing up our first round of review [1] we stated:

The project and system are highly complex and, for the moment,
the review process is adding to the list of open questions rather than
reducing it. There are, at present, significant gaps in the protocol
specification, verification specification, and proofs. We continue to
find issues which we had not noticed in previous iterations. And,
as several parts of the system documentation remain missing, our
evaluation could not consider the system in full.

Since the first round of review concluded some major issues have been ad-
dressed satisfactorily, as we shall detail, which has increased the maturity of the
system significantly; this is particularly true of the system specification. How-
ever, our summation from round one remains essentially adequate as a current
description of the verifier specification, proofs, and architecture documents. For
many of the outstanding issues, Post already has plans to address them in future
releases but these plan have yet to be executed.

As we have started to look more carefully at the code, we have noticed
areas where the code is incompatible with the specification as we shall detail
below; while the lack of alignment between code and specification is the source
of several severe problems it remains unclear how wide spread it is.

2 Update on Prior Issues in Scope 1

In the subsections below we will provide updates on issues we have raised in
previous reports.

2.1 Alignment between the security model required by
the Ordinance and the one used in the security proofs

We have expressed significant concerns about the alignment between the Ordi-
nance and system. These issues are primarily concerned with the computational
proofs document; this document has not been updated since our draft report
in round two of the examination and so our concerns remains essentially un-
changed. We highlight a few issues below.

2.1.1 Role of auditors

In our draft examination report in round 2, we expressed concerns about the
roles of auditors, which we see as being more active and trusted than what the
ordinance allows. More precisely:

e Article 2.2 of the Ordinance Appendix does not authorize any communi-
cation channel from the auditors of from their technical aids to any other

system participant. However, Section 4.4 of the Specification document
and Section 11.4 of the Proof document indicate that the protocol requires
the verifier to perform the VerifyConfigPhase algorithm at the end of the
SetupVoting algorithm and to report an invalid execution to the Setup
Component, which requires a communication channel.

e Art. 2.9.1.1 and 2.9.3.1 of the Ordinance appendix indicate that the au-
ditors and their technical aids must be considered untrustworthy for in-
dividual verifiability and for privacy. However, Section 11.4 of the Proof
document indicate that the auditors and their technical aids are considered
to be trusted during the Setup phase, which is also reflected in the secu-
rity definitions of the same document (e.g., VerifyConfigPhase is assumed
to be performed honestly in the vote privacy experiment, even though it
is executed by the auditor technical aid).

We feel that it is an important requirement from the Ordinance to require
that the auditors should be treated as untrustworthy components (for individual
verifiability and for privacy) and should perform their task essentially as exter-
nal components, that is, without sending any message to protocol participants.
An audit largely brings trust from the understanding that it is performed by
independent people, external to the system, who won’t collude or simply make
the same honest mistakes as the system operators. But this independence also
means that the system operator cannot rely, for running an election, on the
auditors to be trustworthy: they are independent components, out of the con-
trol of the system operators. We then believe that it is sound to keep a clear
separation of duties: the system operators need to be able to run a successful
election and produce evidence of the success of the election independently of the
auditors, and the auditors need to be able to verify the election independently
of the system operators.

Of course, it may be convenient to feed the auditors with data during an
election: it may lead to faster conclusions, and it may also be good to have an
informal feedback from them before the election is complete. We understand
that this is authorized by the Ordinance as well.

But the current description of the system goes much further than that: it
states in Section 11.4 of the Proof document that

The cantons run the setup component and the verifier [i.e., the au-
ditor technical aid] in a similar, secure offline environment. Thus,
we consider the verifier and the setup component equally secure and
trustworthy in the configuration phase.

So, the auditor technical aid:

e cannot be running in an environment that is not controlled by the can-
tons, which brings concerns regarding its independence from the election
process;

e cannot be considered untrustworthy during the setup/configuration phase,
because the security proofs that are given assume that the verification is
performed by a trusted component.

e cannot operate without a communication channel to other system par-
ticipants, because an election won’t complete unless they report that the
VerifyConfigPhase algorithm completed successfully.

Our proposal to address these issues would be to merge the verifier and
the trusted setup component: as far as we can see, this would remove all the
non-conformities listed above, and would also be consistent with the reality of
having the current verifier and setup component being operated by the cantons,
in a similar secure offline environment.

We also feel that it would make sense to ask the control components to
run the the VerifyConfigPhase algorithm on their side. It certainly is a time
consuming operation, but a very important one, and one that can run before
the beginning of the election, when time constraints appear to be limited.

The auditors and their technical aids should then be separate components.

2.1.2 Roles of tally control component and electoral board
In our draft examination report in round 2 we said

There is also an important discrepancy between the threat model
given in Table 1 and Table 5 of the Proof document and the one used
in the privacy definition (Def. 15) of the same document. (A very
similar point was already raised in our March 2022 report. Many
changes were made since then, but this difficulty isn’t solved, nor
addressed in the responses we received.)

Table 1 of the Proof document indicates that the Tally Control Com-
ponent and the Electoral board are part of the “Untrustworthy Sys-
tem”, and Table 5 of the same document confirms that the “Un-
trustworthy System” must be considered untrustworthy regarding
voting secrecy, which is aligned with the Ordinance.

Our understanding is that Post will address this in the December release.

2.1.3 Authentication issues

Authentication issues are one of the more positive stories from this examination.
Early versions of the system had weak authentication which allowed exploitable
attacks, Post has already implemented authentication which seems suitable for
the system. The one remaining concern which has not been addressed is that
of messages being dropped without detection. The completeness checks in the
auditor do not catch this.

We have had some discussion with Post about how to address the remaining
concerns here and hope to see progress in the December release.

2.1.4 Lack of zero-knowledge proofs for key generation

We had complained in [1] that a lack of zero-knowledge key generation allowed
attacks which were in scope of the ordinance but not the definitions in the
computational proof document. This issue has since been addressed by adding
the missing proofs.

2.2 Missing elements in the verifier specification

Missing elements in the verifier specification remains one of the most significant
concerns for us. The checks in the verifier are critical for individual verifiability,
universal verifiability and privacy. There has been some progress in this area
but there are still critical deficiencies.

pTable Previously we stated that

The pTable needs to generated or verified to ensure a consistent
view with the information sent to the print office.

This has been substantially mitigated by changes in the create vote algo-
rithm, and corresponding verifications, to include the pTable in the auxil-
iary information going into the (zk-)proofs. These changes ensure that if
the auditors, CCRs and voter’s device don’t agree on the pTable then the
proofs will not verify. We will review these changes in more details once
the other issues in the verifier specification have been resolved.

Correct decoding Previously we stated that

The correct decoding of the primes into voting options needs to
be verified.

this step has now been added to the specification.
Auditors use of the tool Previously we stated that

Moreover, all steps performed by the auditor with respect to
the verifier UI needs to be checked. For example, verifying that
the number of voter cards issued matched the number of eligible
voters.

This remains the chief issue with the verification specification. The ordi-
nance considers a human auditor with technical aids; the verifier specifi-
cation deliberately removes this distinction

we will no longer distinguish between auditors and their tech-
nical aid; we refer to the verifier as both the auditor and the
software used by this auditor and assume that the auditor and
the technical aid are trustworthy.

Attempting to remove this distinction is problematic because the auditor’s
(correct) use of the technical aid is critical to security. The verifier speci-
fication needs to describe how the auditor uses the technical aid otherwise
there are potential attacks.

Data format and transmission Previously we stated that

The verifier specification does not adequately detail the struc-
ture of the information logged and how that information is trans-
mitted and received .

This has been increasingly resolved by the presence of example files in
the verifier implementation. The strength of the authentication mecha-
nisms seems to suffice to ensure that the exact transmission is no longer
particularly relevant but we would like to check this further.

2.3 Technical issues in the security definitions and proofs

In our previous reports, we listed a number of open issues with the security defi-
nitions and proofs. There have been many important changes and improvements
since then.

But these changes, while addressing some of the issues, also introduced new
challenges. We elaborate on those of them that we mentioned in our draft
examination report, and for which we feel that further discussions might be
useful.

Handling inconsistent states In our March 2022 report, we wrote:

The games in the formal security definitions restrict the adversary’s
action far more than the system does. This means attacks may be
missed. [...] The central issue is that games do not model the ability
of the adversary to control the execution flow of the protocol which
in the real system it has significant ability to do through a corrupt
voting server.

Section 12 of the Proof document makes an important step in order to ad-
dress this issue, by introducing a new protocol for handling inconsistent views
of the confirmed votes. The abstract description of this protocol is plausible.
However, the protocol itself is missing in the Specification document, in the
Verifier document, and it is absent from the Proof document as well. As such,
it is impossible to assess whether the right votes would be included in the tally.
We elaborated on this issue in our draft examination report. This issue is still
open.

Unbounded extractors Our March 2022 report discussed challenges with
the extraction of witnesses from proofs. The Proof document has been modified
in order to address these questions and, in particular, Section 13.2 introduced

a strategy of using inefficient extractors that can decrypt ciphertext without
knowledge of any decryption key. In essence, this is not a problem. But it may
become one, for instance when challengers running an inefficient extractor are
becoming part of a reduction to a problem that is only hard to solve by efficient
adversaries. And the current security proofs do not offer any indication on why
such problems do not occur.

Following interactions with Swiss Post based on our draft examination re-
port, we would like to elaborate on this concern using one specific example,
taken in Lemma 2 from the Proof document.

Figure 23 defines a security game between an adversary and a challenger.
This challenger is not explicitly named in the proof, so let us call it Cp.

Looking at the proof, we see that Game vc.1 defines a new challenger C; that
is identical to Cy except that it runs the Extract function that does not run in
polynomial time (as explained in Sec. 13.2 of the same document).

Game vc.2 goes the same way: it defines a new challenger C; that is identical
to Cq, except for some extra checks. More precisely, Co takes two ciphertexts that
have been provided by the adversary together with a proof that they encrypt
the same message, uses the Extract function to compute these messages, and
aborts if they are different even though the proof checks.

It is claimed that “the Adversary can only notice the extra check if it can
generate a plaintext equality proof for an invalid statement without the honest
control component noticing” and a reduction Bs is outlined, that submits the
unsound ZK proof to a proof soundness challenger. This argument follows the
pattern of a “transition based on failure events” in Shoup’s terminology.!

Let us try to make it more explicit. We call S; the event that there is a bad,
event occurring as a result of an interaction between A and C;, and F' the event
that the plaintext equality proof provided by the adversary passes verification
for two ciphertexts that encrypt different messages.

We observe that S; A =F < Sy A —F: indeed, the behaviors of C; and Cy
only differ when F' happens, and we exclude F. As a result, Shoup’s difference
lemma shows that | Pr[S;] — Pr[S2]| < Pr[F]. Until now, we just tried to make
more explicit what we think is written in the proof.

The challenging part comes when the proof concludes by bounding Pr[F] by
claiming that it can be bounded thanks to a reduction Bs that uses the plaintext
equality proof provided by A and submits it as a fresh proof that breaks the
simulation soundness security.

As far as we can see, the obvious way of defining By would be to let it run
an interaction between .4 and C; and submit the proof that comes out of this
interaction to the simulation soundness adversary (our guess is that it is what
the proof suggests to do, and this is also the strategy that Shoup suggests as
the “usual” one). However, as such, this strategy does not work here because
Bz would not run in PPT (because of C;), which would make it useless in the
context of the simulation soundness security game that is only defined against
PPT adversaries.

I'We follow p.2 of https://www.shoup.net/papers/games.pdf.

So, we believe that this proof calls for a more detailed explanation of how Bo
is built in such a way that it runs in PPT and can win the simulation soundness
game when F occurs.

One possible way (to be confirmed, we did not check the details) of going
around such difficulties would be to observe that A must submit his proofs before
any extraction step starts. If this is the case, then one can define a reduction By
that runs the interaction between A and C; only to the point where A produces
the plaintext equality proof, and that this part is still PPT because it does not
require any plaintext extraction. By can then submit the proof it got from A to
the simulation soundness adversary.

This approach would apparently not work for the reduction Bs in the vc.3
game, though: there, the decryption proofs are generated after the extractions
added in C; and Cy happened. A solution in that case might be to change the
order of the game hops, starting with the modifications of the vc.3 game, then
bringing those of the vc.1 and vc.2 games: that may make it possible to write
reductions that would not need to run the Extract algorithm.

There certainly are other ways of making these reductions and sequences of
game hops.

To conclude: our point is that introducing inefficient challengers requires
additional caution when writing security reductions: reductions typically make
use of the challengers and may then become inefficient, as illustrated above
in one specific case. This may or may not be a problem depending on the
context. We think that the proofs that are proposed should be more explicit on
how reductions are defined and, in particular, explain why they remain efficient
when it is needed.

2.4 Context Verification: Input vs. Context

We have highlighted on several occasions the issues with input versus context
in the pseudocode algorithms and related input validation issues in the code.
We comment here mainly about specification issues with some mentions of the
code; we will discuss these issues further in (Sec. 3.2) for the code side. This
investigation has unearthed several possible attack avenues:

Attack on Universal Verifiability In our draft report in round two we men-
tioned an exploitable attack on universal verifiability which exploits sev-
eral vulnerabilities in the system but is best addressed by increasing input
validations; we include our previous explanation with some elaboration in
appendix A. We suggested that this attack was partly to the numerous
complicated options in ElectionDataExtractionService which has seem-
ingly only grown more convoluted since. It does not appear that the
input validations which prevent this problem have been implemented yet;
we assume it will be in the December release.

Possible attack on Individual Verifiability In our draft report for round
two we commented

The setup component (re)learns the verification ids from the
CCRs and checks consistency, this seems fine as long as at least
one CCR is honest.

we have since had a chance to increase our examination and the problem
is worse than we initially thought; we have discussed the issue with Post
and agreed on a solution which we expect to see in the December release.

The current pseudocode algorithms often occur in a context (within the
protocol) in which multiple parties could perhaps have provided the input;
it is then unclear which party did. Often this issue is handled appropriately
at the code level by checking that all parties agree on the contentious
element of the input. There are, however, exceptions and we think that
this could be profitable addressed by specifying the origin of the input in
the system specification and any consistency checks required.

For an example of the issue mentioned above, consider the vector of ver-
ification card IDs received as input by the algorithm CombineEncLong-
CodeShares. Looking at Fig. 6 of the system specification (Overview of
the SetupVoting algorithm) it seems like that this input must come from
the Setup Component because the Setup Component generates the value
and never receives it. This is not the case and the actual code takes this
as input from an untrusted CCR; and in combination with other issues
this may result in a breach of individual verifiability. We will discuss this
issue in more depth in appendix B.

Overall we think Post now has a reasonable understanding of these issues as
evidenced by the changes to system specification in the most recent release
where they write

The context variables should stem from a trusted source (for instance
an internal view or a trusted component) and the implementation
must check the input variables against the context.

We would still encourage making clear what the source of the input is supposed
to be and any corresponding consistency checks but the main step forward
requires is to ensure the code actually takes does ensure the context comes from
a trusted source.

3 Update on Prior Issues in Scope 2

3.1 Undocumented architecture decisions

There are numerous architecture decisions which have been made which have
various advantages and disadvantages. This is to be expected but we think
many of decisions should be better described in the documents to ensure a clear
view, particularly of the disadvantages. In our previous report we highlighted
micro services (which describes both the online system and the verifier)

10

The micro services, though they implement various checks, rarely
check the data for consistency with their view of the election state,
which makes checking the possible execution flows hard. This prob-
lem seems to be particularly important because the protocol speci-
fication document assumes a very coordinated execution flow.

We view this issue principally as a documentation issue but one that belongs
more to scope 2 than scope 1. This has not been addressed.

3.2

Unvalidated inputs

In this section we continue our discussion of the issues of input validation we
started discussing in Sec. 2.4. While we have not had to time to exhaustively
look through input validation issues we will include a short summary of our
current thoughts on the validation of input into key algorithms below.

Alg.

Alg.

Alg.

Alg.

4.1 GenKeysCCR The algorithm in the specification has no input only
context. However, in the code all “context”? comes from the untrusted
voting server; this does not seem compatible contrast between input and
context in the system specification.

If the voting server gives different groups to different CCRs this will be
caught no later than ElectoralBoardConstitutionService by the control
component and actually slight earlier by the CCRs as we detail below.

4.4 GenEncLongCodeShares The data going into this algorithm comes
from the GenEncLongCodeSharesProcessor which checks that the setup
component signed the data; the one exception to this is the encryption
parameters which comes from the local state. However, the encryption
parameters were placed in local state after coming from an untrusted
party and hence should not really be considered trusted.

If the local version of encryption parameters does not match that of the
setup component this will be detected by a consistency check in imple-
mentation which is not explicit in the pseudocode.

4.5 CombineEncLongCodeShares The implementation of this algo-
rithm has the intended split between context (coming from it’s internal
view) and input (coming from external sources). However, the verification
card ids should be part of context not the input, or at least checked as
consistent within the verification card set id. As we mentioned in Sec. 2.4,
this leads to a possible attack which we briefly sketch in appendix B.

4.6 GenCMTable Like Alg. 4.5 the implementation reflects the speci-
fications split between context and input; however, it also has the same
issue where verification card ids are part of input.

2with the exception of the maximum number of selectable voting options

11

Alg. 4.7 GenVerCardSetKeys It is not clear to us that GenVerCardSetKeys
actually ensures that pkccr,, pkccrs, Pkccr, are actually ¢ long and not
longer; the underlying issues is that GroupVector reports element size as
the size of its first element without checking that all its elements have the
same size. In this specific instance this does not appear to matter.

Alg. 4.8 GenCredDat Unlike Alg. 4.5 and 4.6, GenCredData does retrieve
the verification card IDs from a trusted source.

Alg. 4.9 SetupTallyCCM Similar to Alg. 4.1 it seems that the context is
again coming from an untrusted source, with the exception of the node id
and maximun number of support write-ins.

Alg. 4.10 SetupTallyEB It seems the implementation of this algorithm takes
the encryption group from the untrusted CCRs; this is contradictory with
it being part of the context in the specification. We assume that due to
the flow of the implementation that if the encryption parameters where
incorrect then another of the (earlier) checks would catch this.

The specs lists the maximum number of write-ins as part of the input
where similar parameters were considered context in other algorithms,
this seems to be an a minor error in the specification.

Alg. 5.3 VerifyBallotCCR and Alg. 5.4 PartialDecryptPCC It seems much
of the context including encryption parameters, election event id, verifi-
cation card id comes from an untrusted source. The verification of the
payload does check the consistency of the election event id which the local
view of the corresponding encryption parameters. There are numerous
checks which would make sense to add such as ensuring the verification
card set exists for the specified election event and the verification card
exists within the verification card set.

Alg. 5.5 DecryptPCC and Alg. 5.6 CreateLCCShare These algorithms
share much of the same issues discussed in the previous point. This is con-
cerning here because the “process once” defenses in LCCShareProcessor
could be bypassed using the same verification card id with different veri-
fication card set id or election event id.

3.3 Update on our proposed future work

In our draft report in scope two, we envisioned completing significant investi-
gation of the code with respect with requirements 2.5, 2.6, and 2.7 in time for
this addendum; we have not succeed in doing this partially due to tighter time
constraints then we had hoped for and partly because in the process of investi-
gating the code we discovered new errors we were not expecting. We include in
appendix B an example of a possible attack based on the kind of vulnerabilities
we were finding; the issues of odd input flows and set equalities when order is
important, which appear in the above example, also occur elsewhere in the code

12

and we have not exhaustively checked what else might be affected by this. We
also include in appendix C an example (and unpolished) line of the reasoning
we went through to think about individual verifiability at the code level; we
include it because in following it we discovered significant issues in the code
which suggests that Post is not going through a similar exercise since they had
not already identified the issues.

4 New issues

In this section we will comment very briefly on some new issues that have arisen.

4.1 Write-ins

In general, it seems likes the process for handling write-ins is sensible and avoids
several errors that we worried would be made. It doesn’t seem like the write-in
can break anything for predetermined choices, unless the system for predeter-
mined choices is already broken.

We do have a few specific comments, in the Specification document:

e Algorithm 3.9: It would be important to clarify that the square root
that is returned must be the one that is less than ¢, since Algorithm 3.10
assumes that z is in Z,. For instance, the first operation of Algorithm 3.9
could become: z < yPTH/* mod p; if > ¢ then = = p — .

e Section 3.6.4: we are a bit confused about the numbering: positions are
counted from 1, while write-in fields are counted from 0. For instance,
shouldn’t it be the case that w;q 1 gets the value 1, not w;q2?

4.2 Authentication

We comment here on the security of the authentication which occurs before
CreateVote, under the assumption that Start Voting Key (SVK) has sufficient
entropy; this is not specified in the documentation. Since the voting server is
untrusted for all security properties there are a fairly limited number of attacks
which it couldn’t launch regardless of the security of this step. We have not
examined the vote portal carefully, nevertheless at present our only concern is
that the software might allow a malicious voting portal to prompt the voter
for the ballot casting key outside of the proper sequence. The control flow of
the voting portal is not particularly transparent and the related architecture
decisions should be better documented.

4.3 Missing Elements

We observe that some elements are missing in the Specification that are impor-
tant to assess the compliance with the Ordinance.
For instance, Article 2.7.3 of the Appendix indicates that:

13

It must be ensured that no attacker can take control of user devices
unnoticed by manipulating the user device software on the server.
The person voting must be able to verify that the server has provided
his or her user device with the correct software with the correct
parameters, in particular the public key for encrypting the vote.

But we did not find anything in the Specification suggestion how this kind of
attack would be prevented. Indications about this are given in the Architecture
document (p. 11). We understand that the countermeasures against such attacks
are different in nature from those in the protocol, and that describing them in
the Specification would hamper the readability of that document. However, it
also appears that the Specification should be sufficient to assess whether such
attacks are properly prevented. As such, we would suggest having a short section
in the Specification that explains what is taken away from that document, with
pointers to the places where such elements are described.

References
[1] Thomas Haines, Olivier Pereira, and Vanessa Teague. Report on the swiss

post e-voting system. https://www.newsd.admin.ch/newsd/message/
attachments/71147.pdf, March 2022.

14

A Attack on Universal Verifiability Update

The universal verifiability of the system relies (largely) upon a chain of zero-
knowledge proofs. These proofs demonstrate that the announced result, for a
given ballot box, is the correct decryption (and permutation) of that ballot box
(which is here used to refer to an agreed upon collection of ciphertexts).

The vulnerability underlying the attack below is as follows: the verifier is
inconsistent in how it extracts data from the disk; this inconsistency breaks the
chain of zero-knowledge proofs. Specifically, it sometimes extracts data based
on the filename/location of the data and sometimes based on the content of the
data. The inconsistent data could plausibly have been detected by the following
parts of the verification specification to varying degrees but the implementation
does not prevent the exploitation of the vulnerability:

e The authentication checks could plausibly have helped. However, they
take the context data as input from the signer, in this case the adversary,
rather than check based on their own view of the context.

e No consistency check is performed that each online control component has
contributed exactly one shuffle payload per ballot box.

Attack: We will assume below that the auditor and control component 1 are
honest but all other control components are dishonest.

The attack works by altering the order and names of the shuffle payloads
going to the verifier; in addition, the dishonest control components divate from
the protocol during phase in which key generation occurs and the tally control
component deviates during tallying phase.

The result of this reordering is that the online control components’ shuffles
will verify as expected BUT when the verifier attempts to verify the tally control
component’s payload it will NOT do this with respect to the output of the CC4
as the verifier intends, but some other output. In the example we provided to
Post, the verifier checks the tally control component shuffle of the ballot box
750a359fc3bd48acadall56666846267 with respect to the (decrypted and per-
muted) output of CC1 for the ballot box 99208915ab634a4293e36fcfdefadf54.
This means that the validity of the tally proofs no longer link the results
for 750a359fc3bd48acadal156666846267 to its own ballot box but to that of
99208915ab634a4293e36fcfdefadfb4.

We initially thought the attack would not work because, for technical rea-
sons, the mismatched input must be from control component 1, 2, or 3. In other
words, the dishonest tally control component’s proof would be verified with the
wrong input ciphertexts but would ultimately result in garbled group elements
which would be detected by the VerifyProcessPlaintextsAlgorithm. We realised
later that the adversary could choose the secret keys of the dishonest control
components such that they cancel each other out and the decryption of the
ballots using the secret keys of the first control component and election board
would have the same result as decrypting using all keys. This means that this
verification should then pass.

15

Let NXBBY denote the contribution of the shuffle payload contribution of
the Xth CC to the Yth ballot box. The expected shuffle order is as follows
where the file name is implicit in the order of the payloads

Folder BB1: N1BB1 N2BB1 N3BB1 N4BB1

Folder BB2: N1BB2 N2BB2 N3BB2 N4BB2

Folder BB3: N1BB3 N2BB3 N3BB3 N4BB3

Folder BB4: N1BB4 N2BB4 N3BB4 N4BB4

For this attack the payloads are reordered as follows:

Folder BB1: N1BB1 N1BB2 N1BB3 N1BB4

Folder BB2: N2BB1 N2BB2 N3BB2 N4BB2

Folder BB3: N3BB1 N2BB3 N3BB3 N4BB3

Folder BB4: N4BB1 N2BB4 N3BB4 N4BB4

The line in VerifyOnlineControlComponents evidence which pulls the data
is as follows
final Map<String, List<ControlComponentShufflePayload>> controlComponentShufflesByBallotBoxId =

electionDataExtractionService.getAllControlComponentShufflePayloads (inputDirectoryPath).stream()
.collect(Collectors.groupingByConcurrent (ControlComponentShufflePayload::getBallotBoxId));

It is immediate that when grouping by ballot box ids, the payloads in the ex-
ample above come out exactly the same in the original and reordering. In other
words the value of controlComponentsShufflesByBallotBoxId is unaffected by
the reordering attack. This ensures that checks performed by VerifyOnlineCon-
trolComponents will not detect this attack.

The dishonest tally control component deviates from the protocol by pro-
ducing, for ballot box BB1, a proof of shuffle and decryption for the contents of
N1BB4 instead of N4BBI1.

Discussion of why this attack isn’t caught The above analysis consid-
ers how to produce a shuffle payload which passes VerifyTallyControlCompo-
nent; however, such a payload would also need to pass the following consistency
checks:

CheckSignatureOfflineShuffle Since the TallyControlComponent is malicious
it is straightforward for it to sign the tampered payload.

VerifyCiphertextConsistency Checks that the ciphertexts are of the ex-
pected size; this check pulls the files by folder so the tampered ballot
boxes likely need to have the same number of write-in options.

VerifyPlaintextConsistency Checks that the plaintext has the required size;
this follows in this case from the constraints already applied.

VerifyNumberConfirmedEncrypted VoteConsistency As the name indi-
cates this test checks that the number of confirmed votes is equal; this
ensures that any attack of this kind must occur between two ballot boxes
which have the same number of confirmed ballots.

16

Impact The attack allows the adversary to change the election result without
detection by the voter or system. The limitation on the attack is that the result
the adversary claims, with respect to a given ballot box, must have a relationship
to the ballots cast in a different ballot box. The impact of the attack depends
significantly on the election parameters but it seems likely it could be exploited
in practice within the threat mode; fortunately the vulnerability is readily fixed.

Resolution Our understanding from talking with Post is that they will ad-
dress this by using consistency checks to ensure the file names and contents
have the expected correspondence. This approach would seem to work but we
encourage any such requirement to be documented in the verifier specification
or architecture document.

B Possible Attack on Individual Verifiability

What’s the problem: The system is missing a couple of checks that ensure
that the verification card ids and related payloads are processed as expected.
We have not diagnosed exactly how this can be exploited but there seems to be
a moderate probability that this breaks individual verifiability. The solutions
seems fairly cheap so it seems easier to resolve than properly understand the
full implications of the current state.

The essence of the current vulnerability is the association between verifi-
cation card ids and key material can be permuted halfway through the setup
phase; this causes the various allow lists and tables of encrypted to get into a
state well outside of the limits within which the system is expected to operate.

Where is the problem in the online system: The setup component gener-
ates the verification card ids in GenVerDatAlgorithm which is ultimately called
through the VotingCardSetSetupController. These are then persisted in var-
ious services. If we jump to CombineEncLongCodeSharesAlgorithm which is
called by VotingCardSetDataGenerationService, the verification card ids put
into this algorithm ultimately come from EncryptedNodeLongReturnCodeSha-
resService.load which chooses the verification ids from encryptedSingleNode-
LongReturnCodesGenerationValues.get(0).get VerificationCardIds() which is ul-
timately based on the first CCR’s payload.

There does not appear to be any check which ensures that the verification
card ids from the first CCR match the expected verification card ids.

Solution: We encourage a check that all verification cards ids received from
the CCRs by the setup component are verified to match what the setup component
expects both in content and order. The check consists of equality of lists which I
assume is fairly cheap in comparison to other operations performed by the setup
component.

Where is the problem in the verifier: VerifyVerificationCardldsConsis-
tency checks that the verification card ids from the CCRs are as as expected but

17

using set equality which does not check that the order is as expected. These ids
then seem to be ignored by ExponentiationProofsVerificationExtractionService
which just passes the expected ids from the setup component. In combination
this means that a changing of order of verification card ids will not be noticed
by the verification.

Solution: Check the verification card ids match in both content and order.

C Reasoning about individual verifiability

In this section we (extremely informally) analyse one component of individual
verifiability with respect to the code. This section is intended to be indicative
of the kind of sanity checking we expect Post to be doing internally but which
we have not seen evidence of. At the level of polished shown here, this does not
constitute evidence of the security of the code but is useful in finding vulnera-
bilities. We do not claim the analysis is complete but it does serve to check for
certain application vulnerabilities. Specifically, we think this kind of analysis
is better suited to capture data validation and authentication issues than any
analysis of the system we have seen to date.

Essentially the line of reasoning works by trying to figure out the required
preconditions for security at the code level and chasing these backwards through
the execution flow.

C.1 Definitions

e An honest control component considers an encrypted vote to confirmed
with respect to a given verificationCardSetld if it is returned when calling
EncryptedVerifiableVoteService.getConfirmed Votes(verificationCardSetId).

C.2 Assumptions
Cryptographic:

e We will be imprecise and say certain events cannot happen when we rather
mean that will not happen with non-negligible probability for a polynomial
time adversary under the assumption that certain problems are hard.

About the code:

e encryptedVerifiableVoteService.save does not save if the claimed verifica-
tion card does not exist or does exist but already has a corresponding
vote.

e we assume certain properties of the setup component which hold for the
spec but we have not validated for the code.

e we assume that the setup component checks the verification ids revived
from the CCRs match those it sent in both order and content. (This does
not occur at present but Post has agreed to add it.)

18

e we assume that the verifier checks the verification ids revived from the
CCRs match the setup components sent in both order and content. (This
does not occur at present but Post has agreed to add it.)

C.3 No confirmed votes without submission of confirma-
tion code from the voter

An encrypted vote is confirmed according to our definition if it is:
e marked as confirmed and
e belongs to the relevant verification card set

(since this is what EncryptedVerifiableVoteService.getConfirmedVotes does).
For this aspect of individual verifiability we will argue that the honest com-
ponent component will only have satisfied these two conditions if it received the
ballot confirmation code associated with the verification card that the vote pur-
ports to come from; we most also argue that there is no way (within the threat
model) to learn the ballot confirmation code without the voter submitting it.

C.3.1 The secrecy of the ballot confirmation code

The setup component generates the ballot confirmation code and puts out an
encryption which is derived from it. Very informally, all the decryptions that
occur with the corresponding decryption key are associated are for ciphertexts
with associated zk-proofs (which are checked by verify config) which prevent an
unintentional decryption oracle. Both the allow list and CMtable have values
derived from the ballot confirmation key through the random oracle which pre-
vents leakage beyond guessing which suffices if the value is high entropy; the
systems use various measures to boost the entropy of these values.

C.3.2 That the honest component saw the conformation code

Any vote can be saved The only method which saves encrypted votes is
generatePartiallyDecryptedEncryptedPayload in the PartialDecryptProcessor.
This processor accepts input from the untrusted voting server which it first
verifies using verifyPayload before saving. This verification checks the signature
from the untrusted voting server and the group matches the election event.

All verification cards in the honest component were placed there by GenEnc-
LongCodeSharesProcessor which checks that it’s input did come for the trusted
setup component. We therefore conclude that all encrypted votes are attached
to a valid verification card id and verification card set.

Steps required for confirmation We will now argue that the checks per-
formed by honest CCR before marking the encrypted vote as confirmed require
that it has seen the ballot confirmation code.

19

Votes are set as confirmed in VerifyLVCCHashAlgorithm used by the LongVote-
CastReturnCodesShareVerifyProcessor. For a vote to be considered confirmed
input must be provided such that the hash of that input exists within the the
LongVoteCastReturnCodesAllowList. This allow list is retrieved according to
the verificationCardSetId from the VerificationCardSetEntity key by the com-
ponent.

The LongVoteCastReturnCodesAllowList is saved by the LongVoteCastRe-
turnCodesAllowListProcessor which checks that the payload came for the trusted
setup component.

Generation of allow list The generation of the allow list is distributed on
a fairly large stack of classes

VotingCardSetGenerationController Given an electionEventld and a vot-
ingCardSetld the controller uses the votingCardSetGenerateService to con-
struct the codes.

VotingCardSetGenerateService This service is responsible for many things
but importantly for us it calls returnCodesPayloadsGeneratedService.

ReturnCodesPayloadsGeneratedService This service uses the votingCard-
SetDataGenerationService to generate the allow list which is signs and
sends.

VotingCardSetDataGenerationService This service takes the contributions
of the CCRs from encryptedNodeLongReturnCodeSharesService and uses
combineEncLongCodeSharesAlgorithm to combine them.

EncryptedNodeLongReturnCodeSharesService This service retrieves the
payloads it has received for the relevant verificationCardSetld and elec-
tionEventld. We comment on the adequacy of these checks in C.3.2 but
for now we will state simply the suffice to ensure the full payload is re-
ceived for each honest CCR. The code takes the verificationCardld for the
first CCR without checking if this is correct.

CombineEncLongCodeSharesAlgorithm The return code list is constructed
by hashing (“VerifyLVCCHash” ,electionEventID,verificationCardSetID,verificationCardID,
Hash(“CreateLVCCShare” jelectionEventID,verificationCardSetID,verificationCardID,1,1VCC,q4,),
Hash(“CreateLVCCShare” ,electionEventID,verificationCardSetID,verificationCardID,2,1VCC;q,),
Hash(“CreateLVCCShare” electionEventID,verificationCardSetID,verificationCardID,3,1VCC,q4,),
Hash(“CreateLVCCShare” ,electionEventID,verificationCardSetID,verificationCardID,4,1VCC;4,)

Checking of allow list VerifyLVCCHashAlgorithm is called LongVoteCas-
tReturnCodesShareVerifyProcessor. This processor revives input from the un-
trusted voting server.

e The signatures on the payloads are checked with respect to the key of the
claimed Nodeld. The context check is weird because it is based on the first
input not on a global truth.

20

e The list of payloads is checked to be of the expected length

e The expected Nodelds are expected to be present (this ensures in com-
bination with the previous two checks that we have exactly one payload
from each Nodeld)

e All confirmation keys and node ids are in agreement

e These verified payloads are passed on to generateControlComponentlVCC-
SharePayload

After several more steps VerifyLVCCHashAlgorithm checks that ((”Veri-
fyLVCCHash”, ee, vcs, ve_id), hIVCC.id_1, hIVCC_id 2, hIVCC_id_3, hIVCC_id_4)
is in the allow list.

By the domain separation of recursiveHash the only way for for this to
be in the allow list is if hIVCC_id_i, where i the honest CCRs index, to match
Hash(“CreateLVCCShare” electionEventID,verificationCardSetID,verificationCardID,i,]lVCC_d_i).
This was generated in the CreateLVCCShareAlgorithm so we need to jump back
to there.

CreateLVCCShareAlgorithm which is handled by LongVoteCastReturnCodesShare-
HashProcessor as follows:

e IVCC.idi = (H(CK)?)keia

This will only be true if CK = BC K" barring a collision on the hash function.

The adequacy of the checks performed by EncryptedNodeLongRe-
turnCodeSharesService among others The underlying repositories looks
in a particular file line location and loads all the files’ contents into memory
throwing an error if it does not type check. Each file is expected to contain
the payloads of each CCR with respect to a particular chunk. The repository
returns all these as a list of list of payloads order by the chunkld of the first
element of the inner list.

e NodeContributionsResponsesService checks that each payload received claims
to belong to the correct election event and verification card set.

e EncryptedNodeLongReturnCodeSharesService now checks the following:

— that the list received is non-empty

— that each payload us signed by the claimed node with respect to the
claimed data

— Every payload has the chunck id we would expect based on it’s loca-
tion in the data structure and for each chunk has the correct number
of payloads

The system then goes through all response retrieving all payloads matching a
particular node id and retrieved all the contained data.

21

e Checks that set of verification card ids received from each component are
duplicate free

e Checks that there are the expected number of cards

These values are further checked by prepareCombineEncLongCodeSharesInput
within the VotingCardSetDataGenerationService.

e There are no duplicates in the verification card ids
e The number of rows and columns in the data is as expected
e Various other checks whose adequacy we don’t discuss.

We now wish to conclude that information in encryptedSingleNodeLongReturnCodesGenerationValues.get (i-
1) really came from the ith CCR without tampering if i is honest.

e By line 102 we know the data claimed to come from i and by the signature
check it did.

e We know by line 130 that we received the correct number of cards so by
assuming that the honest CCR only produced the correct amount data we
know the only issue is duplicates

e By the check in EncryptedSingleNodeLongReturnCodeShares.Builder we
know that their are no duplicates.

Knowing that this information matches what the honest CCRs sent is a good
start.

22

