
Code review of the Data Integration

Service

CLIENT Federal Chancellery

DATE March 1, 2023

VERSION 1.0

GIT COMMIT e588df1

STATUS Final

CLASSIFICATION Public

AUTHORS Philippe Oechslin, Thomas

Hofer

DISTRIBUTION Federal Chancellery

MODIFICATIONS classification



Contents

1 Introduction 1

1.1 Context 1

1.2 Execution of the work 1

1.3 Executive summary 1

2 Analysis 2

3 Analysis of the Code 4

3.1 Analysis specific to the identified attacks 4

3.2 Generic analysis of the security of the code 4

4 Recommendations 6

4.1 Immediate recommendations: 6

4.2 Other recommendations 6

5 Conclusions 7

OS Objectif Sécurité SA

Route Cité-Ouest 19 - CH-1196 Gland

+41 22 364 85 70 - info@objectif-securite.ch



March 1, 2023 1 Public

1 Introduction

1.1 Context

This report contains our review of a specific software used in the e-voting solution provided by Swiss

Post. The reviewwasmandated by the Federal Chancellery as part of the examination process according

to OEV Article 10 paragraph 1.

The reviewed software (Data Information Service) is used to create the configuration file of an election

event based on the electoral roll and the definition the election.

It is our understanding that the source code of the software will be published in the near future.

1.2 Execution of the work

The reviewwas carried out inweek 5 of 2023. Wewere given the full set of source code and the resources

used to build the code, as well as input files necessary to run the application.

We were able to compile and debug the code as well as run it to generate an e-voting configuration.

1.3 Executive summary

The analysis of the results of the tests led us to the following conclusions:

No significant security issue: We found no evidence of code that would enable various attack scenarii

that we imagined for the specific threat model of the environment in which the software is executed.

Vulnerable dependencies: Someof theapplication’sdependencieshaveknownvulnerabilitiesandshould

be updated or removed.



March 1, 2023 2 Public

2 Analysis

The role of the software is to create a configuration file for an e-voting event. It processes the definition

of an election and of the electoral roll and produces a single XMLfile containing all information necessary

for setting up the the election event.

The software is installed on a secured standalone laptop, operated by at least two persons. Data is ex-

changed by USB keys. The laptop is used for configuring elections. It also contains the software (SDM)

which implements a part of the cryptographic protocol of the setup phase.

During the setup phase, the SDM reads the configuration file created by the DIS and produces results

which it signs with a key that is saved on the laptop.

The software uses the following assets:

• Identity of voters: the electoral roll,

• Definition of the ballots: questions, answers, candidates,

• Signature key: used for signing the produced xml documents.

The laptop also contains the following assets

• SDM software: The SDM uses the output of the DIS and implements a part of the cryptographic pro-

tocol during the setup phase.

• Codes: initialisation key, return codes, confirmation and finalisation code, produced by the SDM.

Malicious operation by the software could result in the following classes of attack:

Attack 1: Adding or removing voters:

This is mitigated by the manual verification of the number of voters and the reclamations of

voter who do not receive a voting card.

Attack 2: Manipulating the rights of the voters: The software could manipulate the configuration of

the election to allow certain voters to participate to more – or fewer – parts of an election (e.g

cantonal or federal).

This is mitigated by the verification of the number of cast votes and the reclamations of voter

who did not have are not able to participate to all expected parts of the election.

Attack 3: Visible manipulation of voting cards to compromise individual verifiability: The software

could modify the phrasing of the questions or the names of candidates or parties to entice

the voter to vote against their will. It could evenmanipulate the codes if it waits until they have

been generated by other software on the laptop.

This is mitigated by themanual review of a sample of cards.

Attack 4: Manipulating the trusted component: The software couldmodify the behaviour of other soft-

ware that runs on the same laptop or interact with their data. It could for example try to leak

secret information through the data that is exported from the laptop or signmanipulated data

with the keys that are available on the laptop.



Analysis

March 1, 2023 3 Public

We have identified two types of attackers:

• Internal attackers: An attacker who injectsmalicious code into the software, before it is delivered to

the canton.

• External attackers: An attacker who injects code into the software through data that is given to the

code. The code could for example be added to the address field of a voter, before the voter registry is

imported.

Any malicious action by the operators or the software can be ignored in the analysis of the software be-

cause the operators already have the capability to manipulate the voting cards without the help of the

software. Additionally, the operators are subject to strong security rules (e.g. 4 eyes principle) as man-

dated in Number 3 of the OEV Annex.



March 1, 2023 4 Public

3 Analysis of the Code

3.1 Analysis specific to the identified attacks

The code creates the output file based on the inputs it reads. We did not find any code does not follow

this principle and that would manipulate the resulting output file. This seems to exclude manipulations

of the content of the cards or of the voting rights of the voters. (Attack 2 and 3)

We did not find any code that would read or modify other files on the laptop, other than the files needed

for its operation. This seems to exclude any attack on the cryptographic protocol. (Attack 4).

We observed that the inputs of the software are XML files, which are handled by a standard XML parser,

relyingonwell-definedXSDschemas. Theuseofastandardparser andawell-definedXSDschemashould

be sufficient in thwarting most injection risks.

Wenoted that there is a specific test for theproperescapingof somecharacterswhich isexecutedduring

compilation. We further confirmed that typical characters that could be used for injections

(!"#$%&’()*+,-./:;<=>?@[\]^_`{|}~) are properly processed. While this does not guarantee that effective

code injection is impossible, it makes it very improbable.

3.2 Generic analysis of the security of the code

In theDataIntegrationServiceclass, line46, a reference ismadeto thepipe/pipes/cantonalTree/stdv1/can-

tonalTreeStdv1.groovy. However, the path in the repository contains the cantonaltree directory, without

the upper case T. This breaks the application on linux, where paths are case-sensitive.

Problem 1 - Vulnerable dependencies

Some of the dependencies needed by the project contain known vulnerabilities.

Dependency Version

commons-jxpath 1.3 7

jdom 1.0

junit 4.12

svg-salamander 1.0

xercesImpl 2.12.2

Recommendation

The dependencies should be updated to versions without known vulnerabilities. Due to the contro-

versy on the commons-jxpath vulnerabilities1, a very careful analysis of the inputs given to the library

should be conducted to ensure no input can be controlled by a malicious party.

1
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=47133#c20

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=47133#c20


Analysis of the Code

March 1, 2023 5 Public

Problem 2 - High cognitive complexity

While most of the code is structured in code units of reasonable sizes, some methods have a (very)

high cognitive complexity. This complicates maintenance and review of the code. One such example

is the buildmethod of the AuthorizationService class, where the complexity is rated at 70.

Recommendation

Suchcomplexitiesmake it very hard to analyse thosemethods as awhole and require additional effort

from maintainers and reviewers alike, thus increasing the risk of errors in logical flows and making

such errors harder to spot. The code should be refactored to reduce the complexity.

Problem 3 - Generics usage

TheStax2Wrapperclass raisesseveralwarnings related togenericsusage, andcouldbenefit fromstronger

typeguarantees. Using twoseparateHashMaps to keep trackof classes andconsumers related to the

same tag names seems like a misstep in encapsulation. So does keeping the type of the iterator and

the value of the current node in the parent class rather than in the nested dedicated class.

Recommendation

Unchecked type conversions can lead to issues that tend to be very difficult to identify, try to avoid

them altogether.

Problem 4 - Null value returned for a collection

In the Ech015vx4Mapper class, a null value is returnedwhere a collection is expected. Onewould expect

an empty collection to be returned instead.

Problem 5 - Inconsistent Java language level

While most of the code style is consistent, some places indicate a migration from an earlier version

of Java that has not been fully completed. For instance, several places include the older Stream.col-

lect(Collectors.toList()) syntax, rather than the now recommended Stream.toList().

Recommendation

While not necessarily an issue of itself, this indicates that the effort invested in the code is not con-

sistent with other elements of the internet voting system.



March 1, 2023 6 Public

4 Recommendations

Based on our analysis and tests, we canmake the following recommendations:

4.1 Immediate recommendations:

We recommend to apply the followingmeasure before the code is used in a voting operation:

• Have the software compiled at Swiss Post and record the hashes of the code, the executable and all

dependencies in a trusted, observable way.

• Have the code reviewed after eachmodification, as long as the source code is not public.

• Verify that the dependencies are authentic and up to date.

4.2 Other recommendations

We understand that Swiss Post will soon publish the source code for general review and use a repro-

ducible build.

• We recommend addressing the code quality issues pointed is this report as far as possible before

publication.



March 1, 2023 7 Public

5 Conclusions

The source code that we reviewed seems to faithfully create the configuration file from its inputs. How-

ever, if the software is not built during a trusted ceremony, there is no guarantee that the software is

made from the analysed source code.

We identified 4 types of attacks that could be mounted in the specific setup in which the application is

used. They can be easily excluded by reviewing the code.

If the recommendation above is appliedwe can conclude that we see no explicit danger in using the soft-

ware.

Furthermore, the dependency management could be improved to identify components known to be vul-

nerable earlier in the process in order to update or remove them. Minor adjustments to code quality could

also improvemaintainability.


	1 Introduction
	1.1 Context
	1.2 Execution of the work
	1.3 Executive summary

	2 Analysis
	3 Analysis of the Code
	3.1 Analysis specific to the identified attacks
	3.2 Generic analysis of the security of the code

	4 Recommendations
	4.1 Immediate recommendations:
	4.2 Other recommendations

	5 Conclusions

