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1 Executive Summary

The Swiss Post e-voting system protocol documentation, code and security
proofs show continuing improvement. The clarity of the protocol and documen-
tation is much improved on earlier versions. This improved clarity has exposed
many issues that were already present but not visible in the earlier versions of
the system; this is progress.

The project and system are highly complex and, for the moment, the review
process is adding to the list of open questions rather than reducing it. There
are, at present, significant gaps in the protocol specification, verification spec-
ification, and proofs. We continue to find issues which we had not noticed in
previous iterations. And, as several parts of the system documentation remain
missing, our evaluation could not consider the system in full.

Furthermore, and as acknowledged by Swiss Post, several of the issues that
we found require structural changes and additions to the current protocol. These
protocol evolution steps require subtle cryptographic engineering and have an
impact on the alignment between the protocol and the Ordinance on Electronic
Voting (OEV), on the security proofs and on the code. These will in turn require
new rounds of review.

Consequently, we present this report as an annual milestone rather than a
final document, and structure it as such. First we summarise our findings as
they relate to Scope 1 of the audit (Sec. 1.1), and Scope 2 (Sec. 1.2), then we
discuss recent conversations on ordinance requirements in (Sec. 1.3).

For transparency, the two detailed reports we provided to the Federal Chan-
cellery can be found in Appendices A and B—in a limited number of cases, these
are updated based on feedback on earlier drafts. The detailed reports clarify
which documents were analysed. A status report on the issues raised in our
August report can be found in section A.6.

We encourage the stakeholders in Swiss e-voting to allow adequate time for
the system to thoroughly reviewed before restarting the use of e-voting. As we
highlight in both our reports, we focused on general issues delaying proper anal-
ysis of specific issues until after the general issues are resolved. While progress
is being made, it seems likely that the review process will need at least as much
time again to properly conclude that the system meets the requirements.
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Most of our efforts were dedicated to the evaluation of the conformity of the
protocol specification and computational security proofs to the requirements of
the OEV (Draft of April 28, 2021) – this corresponds to Scope 1 of the review
process. We also dedicated some efforts to the investigation of the conformity
of the code to the protocol specification – this belongs to Scope 2.

1.1 Scope 1

The system specification and protocol proof are much improved compared to
the status of 2020, but serious issues remain, which are detailed in the reports
available in Appendices A and B. We highlight two of these issues here.

The protocol specification is substantially narrower in scope than
required by the ordinance. This can lead to various problems.

1. The authentication of data is sketched but not detailed. Following our
questions on this subject, Swiss Post realized that the individual ver-
ifiability requirement of the system was not satisfied, due to improper
authentication.

Attack: We detailed an attack on individual verifiability (Sec. A.5)
due to insufficient signature validation. The attack workedby allowing
an adversary to spoof the trusted participants and take control of the
protocol.

The specification was amended on this specific issue (in v.0.9.7), but there
is still no general documentation on the data authentication mechanisms.1

Swiss Post informed us that they are planning to provide this in the future.
Swiss Post is implementing changes which prevent the specific attackwe
raised; however, we are concerned that the underlying vulnerabilities still
exist, at least for now, and other attacks may be possible.

2. The handling of data inconsistencies is not detailed. In a security model in
which many system components must not be trusted, it must be expected
that components do not claim to have the same view of the system status,
and the protocol must specify how inconsistencies are handled.

Attack: This leads to a class of attacks on individual verifiability (Sec. A.4);
We showed, for instance, how the log validation process that is currently
specified could lead to the rejection of a ballot that should be counted.
We also demonstrated that, in some situations that are compatible with
the OEV security model, the logs do not contain enough information to
even decide whether a ballot should be counted or not.

The issue here is that the handling of inconsistencies between the CCRs
is, at present, undefined.

1See our discussion in Appendix A.5 and discussion on the attack and solution by Swiss
Post on https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/issues/1.
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Swiss Post informed us that they are modifying their protocol in order
to address this issue by adding additional verification and consistency
checks to the CCRs. The wider issue of detailing how inconsistencies, and
verification failures, are managed, still needs to be addressed.

The roles and channels in the protocol specification remain only
incompletely aligned with those authorized by the OEV. As a result,
we showed that an attack that breaks the secrecy of the votes does not exist
within the security model that is described in the current protocol specification,
but does exist if the protocol is considered in a security model where the roles
and channels are aligned with the OEV requirements.2

Attack: We detailed an attack on vote privacy due to lack of ZK proofs of
correct key generation (Sec. A.3). The attack exploits the fact that the CCMs
are not required to prove knowledge of their share of the secret key. The attack
does not work in the trust model listed in the protocol specification but does
work in the trust model of the ordinance. This attack highlights discrepancies
between the trust model of the protocol and the required trust model, which
need to be addressed.

Swiss Post informed us that they are modifying their protocol in order to
address this issue.

General consequences The elements that are missing in the protocol specifi-
cation and the misalignments between the roles and channels of the specification
w.r.t. the OEV also reflect on the security definitions and proofs. As an example,
we observe that, when inconsistent logs are taken into account and reconciled,
the success probability of an attacker trying to cast a ballot without a voter’s
approval may be around 4 times as high as what the current security theorems
assert.3

1.2 Scope 2

Scope 2 of the audit covered the software. Our principal focus was on the
alignment between the software and the protocol documentation.

• At the time of our review the source code and verification specification
were still being developed and it was not possible to do a thorough review.
We look forward to undertaking a proper review in the future but this will
take time.

• Several of the design choices in the software have security implications
which are not considered in the documentation (Sec. A.2).

• It was difficult to find the alignment between the software and the speci-
fication. Comments should be added to clearly articulate the correspon-
dence.

2See discussions in Appendix A.1.3 and A.3
3See discussion in Appendix A.4.3.
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• The verifier specification does not adequately detail the structure of the-
information logged and how that information is transmitted and received
(Sec. A.2.3).

1.3 Verifiability and Privacy when all Control
Components are run by private companies

One point which has been much discussed since we submitted our December
report is the level of privacy and verifiability the system should achieve when
all control components–from a particular group–are controlled by private com-
panies.

We are strongly of the view that the ordinance should require the highest
levels of verifiability and privacy–that are technically feasible–even if all control
components controlled by private companies are corrupt. The draft ordinance
already requires a high level of privacy in this case but does not explicitly require
this for verifiability.

Specifically, we suggest adding that “when all the CCRs are corrupted, then
verifiability must hold up to the fact that ballots can be dropped.” This is a
meaningful difference compared to no verifiability at all (as could be the case
now): it guarantees for instance that ballots that have been verified by the
voters cannot be modified – they can only be dropped. Modification is much
worse than dropping: it does not change the number of ballots (so, it is more
complicated to spot), and switching a vote for A to a vote for B has an effect
that is twice as important as just dropping a vote for A. Then, privacy becomes
simple to explain: votes must be as private as what can be expected from the
level of verifiability that is required in the same model.

There is significant work to be done by Post, in collaboration with the aca-
demic partners, to present formal definitions for these properties.

Whatever the precise formulation, there remains an important practical
question: what should the canton (or other authority) do if it sees an abnor-
mally small number of ballots in a bulletin board, and how do we define what
“abnormally small” is? But we think that this question should not be treated
at the level of the privacy definition.
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A December Report

The state of the code, documentation and our investigation

The Swiss Post e-voting system shows a continuing process of improvement—
the protocol and security proofs are much clearer than in earlier versions. In
many cases, the improved clarity has exposed issues that were probably always
present—this is progress.

The scale and complexity of the project are extremely important and, for
the moment, it still appears that every added layer of documentation brings new
issues and inconsistencies to light, rather than closing the list of open questions.
There are some significant gaps in the protocol specification, verification spec-
ification, and proofs—we, too, continue to find issues that we had not noticed
in previous iterations.

This was pointed out in the first draft of this report from July 2021 and,
despite many changes, this remains true with the current version of the system,
which consequently is not yet ready to be thoroughly reviewed. Similarly, var-
ious important gaps are found when investigating the consistency between the
protocol specification and the code.

In this report, we have attempted to focus on general or major issues with the
current version and will leave more specific issues to be properly analysed once
the general issues have been resolved. When there are significant discrepancies
between the specification and the code, there is not much gain in analysing the
specification because there is a good chance it will change.

Our analysis is based on the documents available for the review of the Swiss
Post e-voting system and the Swiss Federal Chancellery’s updated requirements.
Regarding Scope 1, these are:

• The Draft of April 28, 2021, of the Federal Chancellery Ordinance on
Electronic Voting (OEV);

• The Cryptographic Primitives of the Swiss Post Voting System, Ver-
sion 0.9.8 (superseding Version 0.9.5 analyzed in our first draft);

• The Protocol of the Swiss Post Voting System, Version 0.9.11 (superseding
Version 0.9.10 analyzed in our first draft);

• The Verifier Specification of the Swiss Post Voting System, Version 0.9.1.

In some cases, we also looked for clarifications in:

• The System Specification of the Swiss Post Voting System, Version 0.9.7
(superseding Version 0.9.6 analyzed in our first draft).

Regarding Scope 2, the following documents and code have been examined:

• The Verifier Specification of the Swiss Post Voting System, Version 0.9.1;
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• Source Code of the Verifier of the Swiss Post Voting System, Version
0.8.1.0;

• Source Code of the Swiss Post Voting System, Version 0.12.0.0.

The next section of this report describes our main new findings for Scope 1,
the documentation review. Section A.2 gives an overview of new findings for
Scope 2, including the code, verification spec, and discrepancies between these
and other documents. Section A.3 examines issues related to the absence of some
ZK proofs and to discrepancies between the role of some protocol participants
in the protocol specification compared to the OEV. Section A.4 examines issues
relating to consistency between control component views, and how these impact
the proof of vote confirmation security. Finally, Section A.5 describes an issue
concerning signature verification, which was disclosed via the Swisspost git.
Appendix A.6 is a status report on corrections of the issues raised in our draft
report from July 2021. Appendix A.7 is a status report on the various Gitlab
issues we have been involved in. As a general pattern, SwissPost has promptly
corrected those issues that have an immediate solution, but the more involved
and challenging issues will take longer.

A.1 Scope 1

A.1.1 Summary

The materials covered in Scope 1, including the system specification and proto-
col proof, are much improved over previous versions but serious issues remain.

Incomplete Protocol Specification The protocol specification is substan-
tially narrower in scope than required by the ordinance. We highlight three
important aspects below:

• The security of the system depends on how data is authenticated, which
is sketched but not detailed. We pointed out the absence of specification
of the authentication mechanisms, and highlighted some of the associated
potential risks, which led Swiss Post to inspect these mechanisms and
uncover an attack against individual verifiability.4 We believe that this
stresses the importance of the completeness of the protocol specification.

• The security of the system also depends on when and by whom various
processes can be called, which is not detailed. A proper level of abstraction
needs to be chosen and clearly communicated with respect to both these
properties.

• The protocol specification focuses on protocol executions in which all the
system component actions are synchronous. The verifier specification in
some places specifies that verification fails in the case of inconsistency, but

4See https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/issues/1.
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the verification sketch in the System Specification (for example, 12.2.3 -
VerifyVotingPhase) only checks the number, not the values, of vote con-
firmation code attempts. In still other cases, the documents say only that
inconsistencies will be investigated.

The OEV No 2.5 requires “As a condition for the successful examination
of the proof referred to in Number 2.6, all control components must have
recorded the same votes as having been cast in conformity with the system.
Cases where the control components show inconsistencies in this respect
must be anticipated in accordance with Number 11.11 and the procedure
determined in advance.” It is the last sentence of the above quote which
is not completely addressed by the current documents.

Given the discrepancy that it creates w.r.t. the OEV, the potential enor-
mous complexity of interpreting the inconsistencies and the likely pressure
to avoid rerunning the election, we strongly recommend that this area re-
ceive far greater attention than it has to date. We have worked through
the implications in some detail for the final return of vote cast confirma-
tion codes, and made some specific recommendations, (see Section A.4),
but it may be relevant in other parts of the protocol too.

Divergence between roles in the Protocol Specification and in the
OEV The security model and communication channels associated to some of
the protocol participants, as described in the protocol specification, seem to be
incompatible with the OEV.

In particular, the role of the auditors and of the electoral board, as described
in the protocol specification, appears to be problematic. This will be discussed
in Section A.3.1.

Incomplete security model and proofs

• The elements that we noted to be missing in the protocol specification are
also missing in the security model and definitions. As a result, the security
model and definitions are not aligned with how the system is intended to
be used and may miss attacks on the system. This is not aligned with the
OEV requirements (e.g., Art. 2.14 of the OEV Appendix).

• Apart from these missing elements, we highlight several places where we
could not understand why the current security definitions would offer the
desired guarantees (despite the fact that we are accustomed to reading
and writing such definitions). It is important to add a few paragraphs
explaining why the security definitions that are proposed in the text can
be used to demonstrate that the security requirements of the OEV are
satisfied. Especially with privacy, it seems clear that Definition 17 does
not demonstrate that the cryptographic protocol meets the requirements
(e.g., Art. 2.14.1 of the OEV Appendix). We highlight specific examples
in Section A.1.4.
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• The missing elements in the security definitions must of course be expected
to have an impact on the guarantees that are claimed in the security the-
orems. For instance, in Section A.4 we show that some of the (missing)
mechanisms that appear to be necessary to deal with possible inconsisten-
cies in the logs of control components would increase the probability of
success of some attack strategies, violating the currently claimed security
bounds. As a result, the bounds that are claimed in the security theorems
offer a view of the actual security of the protocol that is too optimistic.

• Although the security proofs are significantly improved, there are still
numerous holes. This highlights the underspecification of various basic
security checks in the system as it is defined in the proof document. Fur-
thermore, we were often confused by the very high-level arguments that are
provided to demonstrate that successive games must be indistinguishable.
Proper reductions to the underlying computational assumptions should be
provided, rather than simply invoking these assumptions. We highlight
specific examples in Sections A.1.4, A.3, A.4 and A.5.

Consider a major redesign The current protocol does a good job at pre-
venting the attacks that were previously proposed. However, it is quite visible
that, in many places, the protocol is the result of a long evolution and has
become an addition of patches.

We would strongly encourage Swiss Post to consider the design of a cleaned,
minimal, version of the voting protocol, and to add an extra section in the
cryptographic protocol document, that would offer a clear view of the role of
each cryptographic operation (and what would break in the protocol if each
of these operations were missing). We suggest specific simplifications of the
protocol in several places in the document, but it is clear that much more can
be done, with expected benefits in security, efficiency, and clarity.

A.1.2 Observations regarding the OEV, Draft of 28 April 2021

The new draft ordinance document clarifies many of the requirements that were
present in the previous version, which is a very positive thing. As a downside,
we feel concerned that it also matches more and more closely what a properly
implemented version of the Swiss Post protocol should be doing. Of course, there
is a low-level design space that is quite open and that other system providers
could explore. But it also does nothing to offer incentives to the design of
stronger systems. As a result, it does not offer any incentive for a system
supplier (Swiss Post, or any other one) to explore the possibilities of offering
something more secure than the minimum that the OEV requires.

Would it make sense to refine the requirements by identifying various grades
at which security properties are realized by a system? These could be identified
from the properties discussed in the dialog of 2020, so that a system would not
just be declared to be compliant, but would also receive a grade, so that cantons
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would have the possibility to choose a system that obtains a higher grade? This
would foster diversity, which in turn is good because it would promote quality.

Here are some possibilities that come to our mind in particular:

• The notions of individual and universal verifiability that are required here
are much weaker than those that are standard in the academic literature
(the standard notions in the literature are incompatible with the assump-
tion of a trusted print office, or of control components among which one
must be honest). In some cases, these differences allow for better usabil-
ity or other desirable properties; in others, it is unclear why the system
should not be required to achieve a higher level of security.

For example, there is evidence that voters are more likely to success-
fully perform a code-voting check than a challenge-based ciphertext ver-
ification [11] (such as that used in the Estonian system), so in a sense
these two options are incomparable: code-return systems inherently have
stronger trust assumptions, but problems within the trust assumptions
may be more likely to be noticed, while challenge-based systems require
an independent device and a lot more work from the voter, and may be
successfully used less frequently. The difficult tradeoff between usability
and minimal trust for individual verifiability remains perhaps the most
important open problem in evoting—we are not suggesting that a better
solution than the OEV’s current model exists, but rather that the OEV
should be sufficiently flexible to incentivise better solutions if they are
invented.

Furthermore, not all the trust assumptions allowed by the OEV are neces-
sary for code-return systems. For example, much of the trusted setup that
was shifted into the ‘print office’ in Scytl’s original design is already being
moved into a verifiable setup phase by Swiss Post. This is a significant
improvement, and more improvements could be made.

Would it make sense to offer a higher grade to a system that would remove
some or all of the current trust assumptions?

– Articles 2.9 and 2.10 of the annex list participants and channels that
may be considered trustworthy. It would be interesting to value
systems that would not need to consider as trustworthy some or all
of these components.

– The print component is currently a central trusted component. Ex-
ploring protocols that would reduce the requirements on this system
component should be valued.

• Consider making the universal verifiability proofs open to the public us-
ing techniques which do so without impacting long term privacy, possibly
building on techniques from [7, 13, 1, 5, 9]. We note that it would prob-
ably only make sense to do this if there is a way to add public eligibility
verifiability to the system at the same time – the benefit of publishing the
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proofs appears to be quite low otherwise, compared to the additional risks
(resulting from a bad PRG for instance).

Here are some more specific remarks:

• We are not sure whether the OEV states anything about the handling of
a failure event in the cryptographic protocol (say, a system component
observes that a ZK proof produced by an other control component does
not verify) – the OEV (e.g., Art. 14.1 of the Appendix) seems to rather
focus on hardware failures, which are not necessarily a sign of malfeasance.
Intuitively, it would seem that a control component cryptographic failure
should be taken very seriously, and the offending control component should
probably be removed, whereas a cheating client is expected and should not
necessarily result in strong action. However, it is not clear to us whether
the requirements currently require, and the protocol certainly does not
provide, accountability, so it may not be possible to identify the source
of the problem. As a result, and in the absence of any accountability or
robustness requirement, and of a description of what should happen in case
of failure in the protocol specification, it appears that the voting system
should just be halted. But this is also opening an important channel for
denial of service attacks, and the impact of such a decision would probably
be so high that it may not happen even if it would be technically sound.
Would it make sense to further clarify requirements of accountability and
robustness in the OEV?

A.1.3 Alignment issues between the ordinance and Swiss Post doc-
uments

Distribution of control components Art 2.d of the explanation of the
ordinance says “control components are separate components of the system that
are designed in a variety of ways, operated by different persons and secured
by special means;” It appears from the documents that all components are
either run by Post or the Canton and share a common code base. This seems
inconsistent with “designed in a variety of ways” and “operated by different
persons.”

A.1.4 Protocol of the Swiss Post Voting System

Outstanding Major issues

• The games in the formal security definitions restrict the adversary’s action
far more than the system does. This means attacks may be missed. The
rest of this section is replete with examples; the central issue is that games
do not model the ability of the adversary to control the execution flow of
the protocol which in the real system it has significant ability to do through
a corrupt voting server.
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• In the privacy game it remains unclear what inputs to the oracles are under
the adversary’s control and which are under the challenger’s control. It
seems clear that it cannot solely be under the adversary’s control or this
would invalidate the proofs. This is concerning because it might hide
missing validation checks which are required to prevent attacks.

For example, if the adversary is free to chose bbclean in the online decryp-
tion oracle then they can submit a board for mixing and decryption which
does not include certain cast ballots; this would cause the proof to fail
because the number of elements in cDec,h would differ depending on β.

• We strongly recommend introducing oracles to many of the games, as has
already been done with the privacy game, to better capture the adversary’s
ability in the real system.

For example, in the vote rejection experiment the adversary should be
given oracle access to the honest CCR which it should be allowed to call
many times. The current case only considers the adversary being able
place one input to the honest CCR even though in the real system it
would clearly be able to do this many times. Strangely, the bound shown
in the proof assumes the adversary can call the honest CCR many times;
we suspect this is a result of Swiss Post attempting to patch the incorrect
bound, after we raised it in our last report, without fixing the underlying
issue.

• The main abstraction used for authentication and data consistency in the
proof document is injective agreement. Unlike a two party protocol (as in
Lowe’s definition of injective agreement), it is not immediately clear what
injective agreement would mean for this protocol; a definition of injective
agreement for the kind of protocol under analysis needs to be given. For
instance, we do not know what it means that the setup component and
the control components “must achieve injective agreement” (Sec. 13.1.1) or
that the voter and the control components “must achieve injective agree-
ment” (Sec. 13.1.2). This notion of agreement is particularly tricky when
some of the parties are malicious, as it must be expected here. This also
touches the problems discussed in Section A.4 of this report.

Specific issues Several of the issues detailed below are related to holes in the
security proof which do correspond to real attacks; the attacks do not work on
the protocol as described in the system specification but they do work on the
protocol as described in the proof document. This is commonly because the
auxiliary information used in the zero-knowledge proofs is not specified in the
proof document. While we are not aware of any attacks in this category which
bypass the measures in the system specification (except the one described in
Section A.4), the holes in the proof should be closed to ensure there aren’t any.

• The definition of CombineEncLongCodeShares$ is incomplete since the
(zero-knowledge) proofs it receives may not be extractable. For exam-
ple, they could be copies of the output of the honest party.
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• Section 19.1, Proof of Lemma 1. The first hop relies upon the fact that the
(zero-knowledge) proof made by the honest CCR doesn’t break anything.
This isn’t guaranteed by weak simulation extractability, which would re-
quire duplicates to be filtered. Strictly speaking it is the second hop which
is invalid because it is at that point that the proof would fail.

The attack this flaw in the proof is covering is prevented by details of
the system specification which don’t appear in the proof version of the
protocol. Specifically, the inclusion of the voter identifier into the auxiliary
information of the zero-knowledge proof prevents the copying of the honest
ballots since they are then invalid.

• 19.1 Proof of Lemma 1. It is unclear why the extraction of the secret
keys from the adversarial CCRs can work as it is described. Extraction is
assumed to work for one proof, but this may not be enough to guarantee
that it can be performed for many proofs: there are famous examples
where the extraction complexity grows exponentially with the number of
proofs for which extraction is needed [14]. It is known that straightline
extractors are needed when extraction must be performed on adaptively
generated proofs [3], but the proofs used here do not have a straightline
extractor. It is unclear whether this breaks the proof, but the current
version of the proof does nothing to explain why it is possible to extract
from many proofs in the context of the current protocol.

• Figure 28 and Lemma 2.

– The lack of vcid in Valid ballot will allow ballot copying attacks.

– The game doesn’t seem to include the adversary controlling more
than one voter, or other voters voting

• Page 96 there are several incorrect statements.

– A compliant ballot may not be valid since the proofs could be invalid
even if everything else is correct. However, a valid ballot should be
compliant.

– An honest generated ballot will be valid and compliant but it won’t
be compliant and registered till it is processed.

Minor issues

• The argument for concatenation over truncation on page 19 is not par-
ticularly convincing. Since ElGamal is malleable if the adversary can
manipulate the message, there are more serious problems than the ability
to drop part of the ciphertext.

• It might be easier to acknowledge that the definitions are concrete rather
than asymptotic and simplify the notation on page 10
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Figure 1: Known issues with e-voting system code at time of writing

• Should g1, ..., gL be given to the adversary in ESGSP? The reduction does
not appear to work without doing so. We raised this issue in our draft
report for the DDH game (Fig 16, version 0.9.11) and it has now been
corrected, but we neglected to mention the ESGSP game (Fig 17) - this
should be corrected similarly.

• The use of correctnessIDs and interaction with the allow list should be
better documented. In particular, the connection to the allow list of the
partial choice codes should be made clearer.

A.2 Scope 2

A.2.1 Summary

The documents covered in scope 2, including the source code and the verification
specification, have improved in the security of the cryptographic primitives, but
currently have a large number of issues in terms of the protocol as a whole. Most
of these issues are well known to Swiss Post but are still awaiting rectification:
see Figures 1 and 2 which show the current known issues listed in the various
public Gitlab repositories.

• Our chief concern about the code is the lack of analysis around the use of
micro services. Swiss Post’s use of micro services is well motivated from a
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Figure 2: Known issues with e-voting verifier code at time of writing

technical viewpoint but the released documents do not provide evidence
that they have thought through the security implications.

For example, the micro services allow the functions to be called many times
on a wide range of data, but the security model in the proof assumes most
functions can be called only once on a very rigid input. This is a significant
discrepancy between the specification and the code, that makes it really
hard to decide whether the code does what the specification says, while
making it quite possible that the code will lead to many more possible
system states than what the specification allows.

• The code is currently missing a good deal of documentation (comments)
to properly demonstrate its alignment to the protocol specification.

• The protocol specification considers a single election—as represented by
an election id—running at once, whereas the code will run multiple elec-
tions in parallel. So when the specification says “we only do this once per
voterid” the code often says “we only do this once per voterid per elec-
tion.” This misalignment between the specification and the code could be
a source of serious errors and should be rectified.

• The process by which certificates are generated, transmitted and verified
is not adequately described in any existing documentation. Given how
crucial this process is for security we strongly encourage Swiss Post to
expand the documentation to cover this.

A.2.2 Code

Important issues

• It is currently difficult to determine what part of the code is implement-
ing what part of the specification. We encourage Swiss Post to put clear
comments in the code which detail how it works within the protocol spec-
ification. Anyone should be able to easily find the alignment simply by
searching for the names of algorithms.
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• The micro services, though they implement various checks, rarely check
the data for consistency with their view of the election state, which makes
checking the possible execution flows hard. This problem seems to be par-
ticularly important because the protocol specification document assumes
a very coordinated execution flow.

• The functions VerifyBallotCCR, PartialDecryptPCC and ReturnCode-
sExponentiationConsumer are used by the control components to decrypt
partial choice code and create the long choice return code. They main-
tain state using computed verification card IDs which store the state of
requests. These are indexed by verification card id and election id. This
allows the same voter id to be processed twice which violates the “ensure”
in Algo 5.6 CreateLCCShare. In theory this might break individual ver-
ifiability since the adversary could retrieve multiple sets of return codes
for the same voter. This attack does not work on the real system since
the election id will change, so the control component will use a different
secret key to exponentiate and different long choice return codes will be
generated.

Recommendations

• The code for GenEncLongCodeShares should check the request comes
from the setup component.

• The code for CombineEncLongCodeShares should check that the input
comes from the expected CCRs. That is, it has exactly one input set from
each CCR.

• The CCRs should keep logs of what Voter Cards they create return codes
for and this should be checked for consistency with each other and the
print office.

• All components which contribute to the generation of the secret key used
to encrypt votes should prove they know their share of the secret and these
proofs should be checked.

Minor issues

• For data to be valid in ReturnCodesExponentiationConsumer a corre-
sponding election id and vote id must have already been processed through
decryption but not necessarily with the same data.

A.2.3 “Swiss Post Voting System: Verifier specification”

The principal issue with the audit specification is that it does not adequately
detail the structure of the information logged and how that information is trans-
mitted and received; put in other words it is difficult to tell where the inputs to
the various algorithms are coming form. Since most of the parties the verifier
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receives information from may be dishonest, the details of what data is received
and from whom are vitally important.

Important issues

• It is important that the logging is used with the special termination mes-
sage required. This is mentioned in the second paragraph of 4.3 but not
in the actual algorithms.

Minor issues

• On page 23 when discussing checking that no confirmation attempts have
been dropped it is written that the verifier must ensure canon−final ∩
cafinal = ca. Presumably what is meant is (canon−final ∪ cafinal) = ca.
and canon−final ∩ cafinal = ∅. That is, every confirmation attempt is
either final or non-final.

• It doesn’t seem anyone ever checks that the ids are actually unique. We
are not sure if this leads to attacks. It might make sense to add such an
algorithm to the VerifyConfigPhase.

A.2.4 Issues with the verifier

At present the verifier implementation is too incomplete to be analysed and
we are going to wait until later for this analysis. Our main questions around
its function relate to data consistency and authentication, both of which are
listed as known issues and future work in the verifier’s readme document. We
elaborate on this question in the next few sections.

A.3 Absence of ZK proofs of correct key generation

The CCMs do not prove knowledge of the secret keys corresponding to the
public key that they publish. This is important since the absence of these
proofs means that a minority of parties may know the secret key, which should
have been generated in a distributed manner.

The following attack illustrates discrepancies between the OEV, the protocol
specification and the security proofs. Although we do not think it would work in
the security model of the protocol specification, the proof does not characterise
the possible attacks sufficiently. Even more importantly, this scenario shows a
point in which the trust model of the protocol specification is inconsistent with
the OEV.

An attack scenario on privacy Let us consider the following variation on
the classical attack described in Sec. 13.6 of the protocol specification. We
consider a case where the voting server, the election board and one of the online
CCMs are controlled by the adversary. The adversary sees the inputs of the
honest CCMs (ELpk,1, ELpk,2) through the voting server (Fig. 20 of protocol
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specification) and creates a share which cancels them out. This is done by

inverting their shares and adding one of its own ELpk,3 =
EL′

pk,3∏2
i=1 ELpk,i

. The

setup component acts honestly and computes ELpk =
∏2
i=1ELpk,i ·EBpk which

simplifies to EL′pk,3 · EBpk. At this point the adversary knows the secret key
used to encrypt votes and can break privacy as the votes are submitted.

We observe that this attack scenario does not exist in the more abstract
model that is used in the security proof, since that model considers one single
online CCM (merging CCM1, CCM2 and CCM3).

This attack would also not work in the security model of the protocol spec-
ification, because:

1. It is considered that some electoral board members cannot be corrupted
(Table 1).

2. It is considered that the auditors, among which one of them is supposed to
be honest, authorize the electoral board member to reveal their secret key
to the offline CCM, and this would only happen after a successful mixing,
which CCM3 would not be able to complete. So, CCM4 would never receive
the decryption key shares.

A.3.1 Divergence between roles in the Protocol Specification and in
the OEV

However, we believe that these two aspects of the protocol specification are
incompatible with the OEV security model.

The electoral board The role of the electoral board is currently undefined.
In Table 1 of the specification, the electoral board is not matched to any system
participant of the OEV. As such, and following Art. 2.1 of the OEV Appendix,
it should be placed within the “untrustworthy system” category. However, the
protocol specification indicates, on p. 7, that “Even if some electoral board
members are untrustworthy, we consider the electoral board trustworthy as a
whole.” We could not find any formal definition of “trustworthy as a whole”.
Our best guess comes from p. 89 of the protocol specification that indicates:
“Besides, we omit Shamir’s secret sharing algorithm that splits the offline mix-
ing control component’s electoral board secret key EB sk among the electoral
board members”. We then suspect that “trustworthy as a whole” means that
the number of compromised members must be lower that the threshold that is
chosen for the secret sharing scheme. In any case, this seems to be incompatible
with the OEV that would mark the electoral board as untrustworthy. However,
if the electoral board is untrustworthy, then the attack scenario described above
works, and privacy is broken.

One possible way to solve this issue would be to declare that the electoral
board is an extra control component group, and therefore cannot be completely
compromised. This would require extra care because the electoral board key
is specified (Sec. 13.2 of the protocol specification) to be shared with Shamir’s
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secret sharing scheme, which can accommodate any threshold, and identifying
the electoral board as a control component would require to stick to the trivial
case where all key shares are necessary in order to recover the secret (because
otherwise 3 out of 4 dishonest participants could collude to decrypt). And,
in this case, a simpler additive secret sharing scheme can be used instead of
Shamir’s.

The auditors Art. 2.2 of the OEV Appendix forbids any outgoing commu-
nication from the auditor and from its technical aid. This is consistent with
Table 2 of the protocol specification, which indicates the communication chan-
nels with the auditors and their technical aid just as in the OEV Appendix. We
also believe that it is a good practice to only require the participation of the
auditors once the election is complete (which may not prevent auditors starting
their task as soon as data are available – the whole protocol should just not
depend on this).

However, as pointed above, the protocol specification also requires the audi-
tors to complete VerifyOnlineTally and send information to the Electoral Board
and last CCM before they complete the tally phase. Similarly, Figure 23 of
the specification shows that the auditors must run VerifyVotingPhase before the
tally phase starts, and that the beginning of the tally phase in conditioned to a
successful verification of the voting phase by the auditors.

There are many ways to address these issues. One of them would be to
create an additional auditing control component group that would take the role
currently assigned to the auditors in the protocol specification (the auditors in
the sense of the OEV would run the verification protocol once the election is
complete). Another option would be to ask all the CCMs to run the VerifyVot-
ingPhase themselves before they start tallying, and the electoral board to run
VerifyOnlineTally before they release their keys to the offline CCM4. We did not
analyze these options in detail, and there certainly are other ones that could be
considered.

A.3.2 Recommendations

The discussion of this section highlights important discrepancies between the
OEV and the specification, and shows that non-trivial steps are required in
order to solve these discrepancies: the technical choices that are made may
have a vital impact on the security of the protocol.

Interestingly, it appears that one approach to solve these issues would be to
make a major redesign of the tallying phase, in order to make it more standard.
The current tallying protocol has several unusual aspects that seem to make it
less efficient and weaker at the same time:

• The online CCMs all perform an expensive decryption step.

• The electoral board keeps a (shared) copy of a secret key generated in a
centralized way by the setup component.
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A standard way to proceed would be as follows:

• The CCMs perform all the mixing work without decrypting anything.

• The electoral board (or the CCMs) generate the election public key in a
completely distributed way, each one proving the knowledge of their secret
key share, and only start decrypting after verification that the mixing
process was correct.

This would have several advantages:

• This would reduce latency in the mixing process: each CCM can multiply
each of its input ciphertexts with a precomputed encryption of 1, shuffle
the ciphertexts, and pass the result to the next CCM. This does not re-
quire any expensive exponentiation during the sequential shuffling process
(contrary to a decryption task). The CCMs can then compute their proofs
of correct shuffle all in parallel.

• This would remove an over-reliance on the setup component.

• This would overcome the discrepancies with the OEV.

A.4 The challenges of consistency checking for defending
against attacks on vote confirmation and verification

This section concerns the very final step of the voting phase, in which a voter
enters her ballot casting key BCKid at her client, which transforms it into CKid
and sends it to the voting server. She should receive the correct Vote Cast
Return Code VCCid only if her ballot will be included.

The adversary’s objective is either to return the correct VCCid to the voter,
while producing a vote transcript that leads to the rejection of her vote, or to
produce a vote transcript that leads to the inclusion of a vote for which the
voter never entered her ballot casting key BCKid.

The attacks described in this report rely on some inconsistencies between
the logs of different CCRs for the vote confirmation phase.5 We find it fairly
difficult to understand how the system would behave, should those inconsisten-
cies happen. We believe that the treatment of these inconsistencies should be
an explicit part of the protocol specification, and that the security proof should
demonstrate why this treatment is compatible with the FCh OEV.

Our analysis suggests that a treatment of these inconsistencies that would be
compatible with the OEV would be in contradiction with the current protocol
security analysis, violating some of the claimed security bounds.

Our analysis focuses on specific examples. We do not currently have a proof
that the proposed modifications in the protocol are sufficient, because there
may be other attacks along similar lines. An updated protocol specification,

5This was reported to SwissPost as a gitlab issue: https://gitlab.com/

swisspost-evoting/verifier/verifier/-/issues/1, which is currently confidential but
should soon be visible.
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and updated security proofs, could show how our attacks, and other similar
ones, can be excluded.

A.4.1 What inconsistent logs should be permitted?

Let us consider CCR logs that are almost, but not perfectly, consistent. This
may be the result of communication mishaps, of a corrupted voting server, or
of one, or a few malicious CCRs for instance.

We focus on the Lconfirmed,j logs and, in the rest of this discussion, we omit
lVCCid and the ZKPs, because we assume these are honestly generated, consis-
tent with the other data, and pass verification.

Omission Suppose three CCRs show a certain confirmation attempt but one
missed it, so their logs look like:

CCRj : (vcid, 1, CKid, ∗, ∗) for j = 1, 2, 3.
CCR4 : No record for vcid

Such logs could appear in a scenario like the following one, in which a dis-
honest CCR4 colludes with a dishonest voting client and VS.

1. The client and server-side components all perform the vote-sending and
Choice Return Code generation and return honestly. The client displays
the (correct) Choice Return Code to the voter.

2. The voter enters her true Ballot Casting key BCKid. The client honestly
computes CKid and sends it to the Voting Server.

3. The Voting Server honestly forwards CKid to all the CCRs.

4. The honest CCRs (j = 1, 2, 3) perform all the steps of Section 12.2.2.2 of
the protocol specification correctly, including logging, and return lVCCid,j
(j = 1, 2, 3) to the Voting Server.

5. Cheating CCR4 computes lVCCid,4 correctly, but logs nothing and returns
the value secretly to the Voting Server.

6. The Voting server makes whatever logs are specified when it receives only
three responses (j = 1, 2, 3). (This is currently not explicitly specified in
Section 12.2.2.3.)

7. The Voting server also computes correctly (but does not log) the value of
lVCCid derived from a correct execution of 12.2.2.3 using the lVCCid,j’s
received from honest CCRs (j = 1, 2, 3), plus the lVCCid,4 it received out-
of-band from the cheating CCR4. This result should correspond exactly
to an honest execution with a valid Vote Cast Return Code, and should
therefore find a match in the CMTable at Step 3 of Section 12.2.2.3.

8. The Voting Server then sends the (correct) VCCid value back to the collud-
ing voting client out-of-band.
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Thus the voter submitted his BCKid and received a final confirmation with
the correct code.

However, such logs could also appear in a scenario like the following one, in
which a dishonest CCR4 colludes with a dishonest voting client, while the VS is
honest.

1. The client modifies the vote choices made by the voter and submits an in-
correct ballot to the Voting Server. The CCRs compute the corresponding
choice return codes, which the voter rejects since they do not match her
choices.

2. The voter does not enter her Ballot Casting key BCKid. The client guesses
a BCKid value, computes the corresponding CKid and sends it to the Voting
Server.

3. The Voting Server honestly forwards CKid to all the CCRs.

4. The honest CCRs (j = 1, 2, 3) perform all the steps of Section 12.2.2.2 of
the protocol specification correctly, including logging, and return lVCCid,j
(j = 1, 2, 3) to the Voting Server.

5. Cheating CCR4 does nothing, and returns no value to the Voting server.

6. The Voting server makes whatever logs are specified when it receives only
three responses (j = 1, 2, 3). (This is currently not explicitly specified in
Section 12.2.2.3.) It also returns no Vote Cast Return code to the voter.

Thus the voter never entered her BCKid and received no Vote Cast Return
code. (These logs could of course also be the result of other scenarios – we are
just describing two examples that result from opposite voter actions and views.)

Message reordering Now suppose the CCR logs show the same (two) con-
firmation attempts, but in a different order, so their logs look like:

CCRj : (vcid, 1, CKid, ∗, ∗), (vcid, 2, CK2id, ∗, ∗) for j = 1, 2, 3.
CCR4 : (vcid, 1, CK2id, ∗, ∗), (vcid, 2, CKid, ∗, ∗)

These logs could be the result of various scenarios very similar to the previous
ones. For instance, it may be the case that we have an honest voting client,
that the voter entered a correct BCKid value, resulting in a correct CKid being
sent to the voting server, but that the malicious voting server created CK2id
as well and sent the values CKid and CK2id to the first three CCRs, and the
values CK2id and CKid to CCR4. The corrupted voting server may then decide to
send the correct Vote Cast Return code to the voting client, after reordering the
responses from CCR4. The voter would then have a complete voting session. In
another scenario, the voting server would not send the correct Vote Cast Return
code to the voter. In yet another scenario, the voting client is corrupted, and
both CKid and CK2id are incorrect values.
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Divergence Now suppose all the CCRs show two confirmation attempts, but
all with different values, so their logs look like:

CCR1 : (vcid, 1, CK1id, ∗, ∗), (vcid, 2, CK2id, ∗, ∗)
CCR2 : (vcid, 1, CK3id, ∗, ∗), (vcid, 2, CK4id, ∗, ∗)
CCR3 : (vcid, 1, CK5id, ∗, ∗), (vcid, 2, CK6id, ∗, ∗)
CCR4 : (vcid, 1, CK7id, ∗, ∗), (vcid, 2, CK8id, ∗, ∗)

These logs could be the result of a malicious voting server who sent random
CKid values to the CCRs – and this could happen whether or not the voter
entered his correct BCKid. Alternatively, they could be the result of an honest
voter entering his correct BCKid on a second attempt, resulting in the submission
of CK1id and CK2id to all the CCRs, and then of incorrect behavior by CCR2, CCR3
and CCR4, which would log random CKid values and may or may not compute
and return the correct lVCC codes to the voting server.

Discussion In all three cases, there is no appropriate consistent information
from any single attempt to extract a valid Vote Cast Code. Also, it is not
possible to decide, just from these logs, what went wrong: these transcripts
could be the result of an innocent communication problem, of a corrupted VS,
or of the corruption of one or more CCRs.

In the message reordering case, the logs offer sufficient information to verify
whether the correct CKid value is in the list, based on the lVCCid values from the
logs and on the CMtable. In the other two cases, the logs offer no way to decide
whether the correct CKid is in the list, and whether the voter ever submitted his
BCKid value.

We are not certain exactly how an honest VS would deal with this situation,
but we did not find anything that suggests it should be alert to this possibil-
ity and insist on obtaining a response (in case of omission) or rearrange the
responses (in case of reordering). It is also unclear whether a VCCid would be
returned to the voter in any of these cases.

A.4.2 What do the specification documents say about these cases?

Protocol Specification The scenarios described above describe some incon-
sistencies between the logs of different CCRs for the vote confirmation phase.
At present, in version 0.9.11 of the protocol specification documents, the consis-
tency checks described in the VerifyVotingPhase algorithm (Sec. 12.2.3), which
decide whether votes are tallied, are only incompletely specified—it is not clear
whether the proposed scenarios would pass or not.

Step 5 of the verification of the CCR logs indicates: “Check the equality of
vcid and confirmation attempts number in {Lconfirmedj}mj=1. Our understanding
is that the “Omission” case would fail on this criterion, but that the “Message
reordering” and the “Divergence” cases would pass, since all the CCRs have 2
attempt for vcid.

The presence of extractable short Vote Cast Return Codes is also verified.
Here, we expect that the “Divergence” case would fail because of the absence of
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lVCCid,j tuples in the CCR logs that make it possible to extract a return code
from CMtable. The case of the “Message reordering” is less clear: VS could have
marked the ballot as extractable, and the right lVCCid,j values will be found in
the CCR logs, even though they won’t correspond to the same attempt: even
though we do not find any suggestion that a honest VS would try to reorder
values coming from the CCR in order to see if they lead to an extractable code
(and hence would mark the ballot as non-extractable), the VS is not trusted
to follow the protocol specification and could mark the ballot as extractable.
Besides, the verification process does not seem to require that the right lVCCid,j
values must come from identical attempt numbers in the CCR logs: this could
make this ballot pass verification.

Protocol Specification, again Much later, in Section 16.2 of the protocol
specification document, there is an indication that auditors who find an in-
consistency could start interacting with other system components, perform an
analysis, which could result in a modification of the voting server and control
component’s state and in the list of ballots to be included in the tally.

There is no specification of this state modification process specified there,
however. So, based on the protocol specification, we do not know if this ballot
would be marked as valid and ready to be counted or not, and many approaches
would be possible: we outline some of them below.

One simple approach would be to discard the ballot, because of the failure of
the verification process, and because a VS that behaves according to the protocol
specification would not have sent any VCCid to the voter – so the voter would not
have received any proof that her ballot was recorded. However, this approach
is problematic, because, as discussed above, the logs are also compatible with
protocol sessions during which the voter would have seen the correct VCCid,
which would be proof that the ballot was recorded for tally.

Another approach would accept the ballot in the “message reordering” case,
because the logs contain all the information that is needed to verify that the
voter actually submitted her BCKid (if the reordering is detected), and to reject
the other two cases because, from the logs only, it is not possible to determine
that the voter submitted her BCKid.

In a third approach, a more in-depth investigation would be organized re-
garding the “omission” and “divergence” cases, in order to determine if the logs
offer any compelling evidence that the voter submitted her BCKid. This would
require further interaction with some system components, in order to obtain
missing elements.

In any case, if the inclusion of the ballot is decided in any of the 3 cases, it
appears that the logs and states of various system components would need to
be modified, and we do not know how such a sensitive process would happen,
as it is not part of the protocol specification.

Besides, such a decision seems to be incompatible with the OEV: any such
action would require a communication originating from the auditors (or auditors’
technical aids) towards some system components, which is not allowed according
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to Art 2.2 of the OEV Appendix.

How are these questions handled in the security proof? The relevant
section is in 16.2, where Theorem 3 formalises the idea that a voter should not
receive a valid Vote Cast Return code for a vote that is not included.

The security proof does not properly cover cases like this because

• The description on page 102 does not line up the explanation of Art. 2.5
of the ordinance—the cases and responses need to be handled,

• The game in Figure 30 does not model multiple code submission attempts,

• The game is hugely reliant on data consistency, for example it is not clear
that the adversary is allowed to choose to omit some confirmations entirely
and produce something like the Omission transcript.

• It does not seem possible in the game for the adversary to block the honest
voter’s transmission of CKid to the honest CCR, but a real adversary who
controlled a corrupt VS could easily do so.Step 11 is hard to understand,
because the definition of ConfirmVote does not output a tuple, so it is not
clear exactly what the adversary can control.

• The proof tries to cover attacks that the game doesn’t (like allowing mul-
tiple attempts), but this says very little as long as the security properties
are not fully defined.

• Figure 31 has similar issues.

Verifier Specification The verifier specification (version 0.9.1) is more de-
manding, and it appears from Section 4.1 that none of the inconsistencies that
we propose would pass verification: verification step 2.43 requires strict equality
accross control components of the hCKid, attemptsid, vcid values. This would
in particular imply that the “Message reordering” case, which may have passed
the previous verification steps, would still result in a verification failure.

Contrary to what appears in Section 16.2 of the protocol specification doc-
ument, the verifier specification just concludes with a failure, and there is no
suggestion that any log reconciliation attempt should be made.

A.4.3 What should be done?

The OEV has several articles related to this phase of the protocol. Art 2.5
requires, “As a condition for the successful examination of the proof referred to
in Number 2.6, all control components must have recorded the same votes as
having been cast in conformity with the system. Cases where the control com-
ponents show inconsistencies in this respect must be anticipated in accordance
with Number 11.11 and the procedure determined in advance.”

Articles 5, 6 and 8 of the OEV indicate that any voter who receives a proof
that his vote has been registered should have his vote counted as long as at least
one control component from each group is honest.
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Option 1: inconsistent logs cause complete verification failure One
way of dealing with these problems is to enforce the strong verification failure
response described in the Verification spec: complete election verification failure
in the case of any inconsistencies.

It was unclear to us whether this approach would be consistent with the
OEV. Arguably complete verification failure is a “procedure determined in ad-
vance” and arguably there is an implicit expectation that the guarantees of Art
5,6 and 8 are allowed to fail when verification fails. (Though this could probably
be specified more clearly in the OEV, if it is intended.) Either way, this seems
to be a very strong reaction to inconsistencies that may easily appear due to
normal network issues, particularly given that the CCRs are supposed to be
under the control of different organisations.

Option 2: accept inconsistent logs as long as at least one CCR has the
correct CKid. We observe that, as soon as one of the CCRs has the correct
CKid value logged, then it may be the case that the voter saw his final VCCid
code: it is compatible with the security model that the one CCR that shows the
correct CKid provided its decryption factor, and that the other CCRs did the
same without logging anything, while the VS would have returned the correct
VCCid to the voter, without logging anything either, and without marking the
ballot as cast.

As a result, Art 5,6 and 8 imply that, if one of the CCRs has the correct
CKid value logged, the corresponding ballot must marked for inclusion in the
tally. (This discussion is only about the ballot confirmation step, and abstracts
from what may happen in previous protocol steps. A different conclusion may
be reached depending on other parts of the logs – see discussion below.)

The question is how to change the protocol to achieve this. This prompts
for non negligible protocol changes.

Should the auditors get involved? The current process by which auditors
could possibly lead to this result remains unspecified. We believe that these
cases, being compatible with the security model of the OEV, should be part of
the protocol specification. Otherwise, it is impossible to assert that the decisions
that would be made by the auditors would be compatible with the OEV.

Furthermore, the task that is currently proposed to the auditors raises non-
negligible practical challenges. In particular, for the “omission” and “diver-
gence” cases, the logs do not contain enough information to decide if the cor-
rect CKid value is there. This issue could be solved by requesting more lVCCid
values from CCRs that could be compromised and may refuse to respond – or
would just refuse to respond because this is what the protocol specification cur-
rently requires them to do. Support from the set-up component might also be
requested, but this raises its own security challenges.

Furthermore, this process should not be the responsibility of the auditors:
the task of the auditors should not be to accomplish fundamental protocol steps,
and it seems that this is incompatible with the OEV anyway. Other system
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components must be in charge here.

Adding an explicit agreement protocol or bulletin board It appears
that the fundamental source of this problem is agreement on the input data
between the CCRs, vote server and auditors. In the earliest versions of this pro-
tocol, the voting server’s role was taken by a Bulletin Board, which represents
a completely different set of trust assumptions, specifically the impossibility of
showing different views of history to different participants. Substituting an un-
trusted Voting Server left the protocol without the right grounding assumptions
to make it secure.

The right way to address these issues would be to (re-)introduce an explicit
notion of a mechanism for all the CCRs to agree on the values of CKid. There
are several ways to think about this, which may not actually be very different
in practice:

• a direct agreement protocol executed by the CCRs;

• an optimistic behavior by the CCRs during the voting phase, in which
they expect agreement, followed by a verification step by some other com-
ponents (perhaps the CCMs) in order to check that agreement had been
achieved, with a recovery protocol being executed if it is not;

• a bulletin board, which would implicitly involve some form of agreement
under some assumptions.

It is important to consider the security assumptions under which this proto-
col or component would be trustworthy. There is a vast literature on distributed
agreement—Byzantine protocols (such as [6]) are secure only against at most
bn−13 c faulty participants out of n in total. However, the assumption of dig-
ital signatures should allow you to use protocols secure only against stopping
failures, for which arbitrary numbers of misbehaving parties can be tolerated.

After an explicit agreement step, it would make more sense to impose a strict
policy of verification failure in the event of any inconsistency, i.e. Option 1.

Changes in the security definitions and security theorems The current
security definitions assume that there is no inconsistency between the various
logs. As such they do not capture various system behaviors that can occur
within the security model defined in the OEV, and the security theorems in the
protocol specification documents say nothing about such cases.

It seems however fairly clear that, if it is decided that a ballot must be
marked for inclusion in the tally when only one of the CCRs has the correct
CKid value logged, then the current security claims are incorrect.

As an example, let us consider a vote injection attack, in the setting of
Section 16.2.2 of the Protocol specification, but with the amended ballot inclu-
sion rule. The attack follows a scenario very similar to the “Divergence” case
discussed above and is as follows:
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1. A malicious voting client modifies the choices made by a voter, resulting
in incorrect choice return codes being returned.

2. The voter is cautious, notices the incorrect choice return codes, and does
not type his BCKid.

3. The corrupted voting client then sends, using an off-band communication
channel, the kid of the voter to a malicious voting server.

4. The corrupted voting server makes 4 · maxConfAttempts guesses on the
value of BCKid, computes the corresponding CKid, and sends maxConfAt-
tempts distinct guessed BCKid values to each of the CCRs. Each CCR
will then include maxConfAttempts values of the form (vcid, ∗, CKid, ∗, ∗)
in their logs.

5. The inconsistency between the logs is detected, and the ballot is accepted
if the correct CKid appears in any of the CCR’s logs.

As a result of this process, the ballot is accepted with a probability at least
4 ·maxConfAttempts/|Cbck|.

This attack success probability is expected to be around 4 times as big as the
maximum success probability of a vote injection attack according to Theorem
3, which only offers a factor maxConfAttempts/|Cbck| only.

Of course, increasing this probability by a factor 4 may remain low enough.
But it remains substantially higher than what the security analysis of the pro-
tocol claims.

A.4.4 Discussion

We believe that the issues presented above have always been present at this stage
of the protocol, and that SwissPost’s improved description of Scytl’s protocol
has brought them to light rather than introducing them.

We also suspect that similar issues may occur at other steps of the protocol.
For instance, inconsistencies may also happen in the process of computing the
partial Choice Return Codes, earlier in the protocol. While the logs may be
inconsistent, a voter may or may not have seen the correct Choice Return Codes.
In both cases, the voter may have entered his BCKid (this could also happen with
one incorrect Choice Return Code that the voter would not notice), and it may
then be tricky to decide what to do if the correct CKid appears in one of the
CCR’s logs.

As a result, we do not make any claim that it is sufficient to follow the
policy discussed above, of including a ballot in the tally as soon as only one
of the CCRs has the correct CKid value logged. This choice may actually be
incorrect in some cases as well, depending on what happened at other steps in
the protocol.

Indeed, we also do not have a proof that either the strict option (Option
1) or the explicit-agreement (Option 2) are secure—these are simply suggested
directions to investigate.
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We believe that important updates are needed in the protocol specification,
security definitions, and security theorems, in order to address these issues, and
offer evidence that they are solved.

A.5 Issues with signature verification

This section of our report refers to a vulnerability disclosed to Swiss Post in
March 2021 prior to the current review process starting. We include it here for
completeness since some of our other findings depend on this vulnerability. We
also include it because the underlying vulnerability is still not patched.

When verifying signatures the Swiss Post Voting system6 failed to check that
the signatures came from the party it expected to be corresponding with. This
potentially allowed attacks on integrity by spoofing the input of honest parties.
These attacks could be caught by the verifier, but since the relevant parts of the
verifier were not published at the point the bug was submitted (March 2021), it
was not possible to verify this. Swiss Post has now confirmed how they intend
to resolve this issue and pending some slight updates to the documentation and
code, the known attacks from this vulnerability should be fixed. We expect that
Swiss Post will release a Gitlab issue about this vulnerability but this has not
yet occurred.

A.5.1 Key recommendations

Check identity The signature verification should check that the corresponding
party is correct. This could be done by checking that the X.509 certificate’s
subject field contains the expected name.

Check key usage All certificates in the chain should be checked to verify that
they are being used for a valid purpose (using the attributes provided in
RFC 5280).

Secure initialisation It is crucially important that the root certificates are
correctly loaded. The documentation should clearly describe how this is
accomplished.

A.5.2 Details

This section of the report describes the problem as it existed in March of 2021.
The current public version includes several improvements which partially ad-
dress this issue; Swiss Post has confirmed they intended to update the docu-
mentation to completely address the attacks raised.

Many of the authentication checks in the system verify that the input is
signed but not who it is signed by. Since the adversary has valid signing keys

6This vulnerability was detected in version 0.7
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it can then impersonate honest parties. Examples appear to include validat-
eChoiceCodesEncryptionKey in VotingCardSetDataGeneratorServiceImpl and vali-
dateSignature in ChoiceCodesGenerationServiceImpl.

For example, this could allow the adversary to impersonate the one hon-
est return code control component starting in the config phase and running
undetected until the logs of the control components are examined in 12.2.3 Ver-
ifyVotingPhase.

The key issue here is that the system, when verifying signatures, does not
check that the attached X.509 certificate’s subject field matches the expected
party or that the keys are being used for a purpose which the signer of the
key’s certificate intended. No check has been found which prevents the control
components from impersonating the one honest control component. This would
allow the one honest control component to be bypassed, which breaks cast-as-
intended verification; the setup component would honestly combine the shares
of the return codes but all the shares would be coming from the adversary.

No audit of the config phase described in the computational proof or system
specification, at the time this issue was reported, would catch this attack on
cast-as-intended. Nor was the verifier for the config phase in the repository.
However, it was an open question if the attack (or a similar attack) would go
undetected by the verifier specification and implementation that were (and to
a significant extent are) unreleased and under development.

In conclusion, the identified vulnerability did appear to lead to manipulation
that goes undetected by the voter but not by the system based on the then
released material. However, the attack was caught by then unreleased checks.

A.5.3 Resolution

Swiss Post has prevented the attack detailed in this report by a manual process
which checks that the certificates used in the verification are the correct certifi-
cates. This certainly prevents the specific attack detailed in this report. More
details on the resolutions should appear soon when Swiss Post posts an issue
on their Gitlab repo related to this finding.

Summary

The underlying vulnerabilities described here are still present in the Signa-
tureChecker class in the verifier and the various signature verification imple-
mentations in the voting system. While there are no currently known attacks
which exploit the vulnerabilities, we nevertheless strongly encourage Swiss Post
to patch the underlying vulnerabilities by implementing the key recommenda-
tions of this report.

Future versions of the Swiss Post Voting system aiming for higher levels
of assurance may wish to dispense with certificate chains entirely and load all
certificates through a manual process; this would eliminate the need to trust
any root certificate authority.
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A.6 Status of issues raised in our draft report

A.6.1 Crypto primitives of the Swiss Post Voting system

Algorithm 3.1 Swiss Post has implemented our suggestion to truncate the
random string before testing if the resulting integer is in the desired range.
This makes the system more efficient.

Algorithm 3.6 Swiss Post has implemented additional domain separation to
prevent the issue we described. We have not carefully reviewed their
revised version.

Section 4.1 We commented that the default security level was relatively low
and recommended they adopt the extended security level. We do not
appear to have received a response.

Algorithm 4.1 We noted that algorithm required to p to be a multiple of 8.
Swiss Post has updated the document to reflect this.

Algorithm 5.6 We noted the generation of group generators did not fit the
standard discrete log assumption. Swiss Post has now rectified the issue.

Typos The typos we raised have been fixed.

A.6.2 Protocol of the Swiss Post Voting System

4.11 Election public key In our previous report we expressed our concern
about how the public key of the election is transmitted to the CCRs and
detailed a possible attack. We were especially concerned because Thomas
Haines had notified Swiss Post in March that they were not authenticating
communication properly, see section A.5 for details.

Swiss Post has confirmed that we had indeed identified an attack on indi-
vidual verifiability which would not have been caught until invalid votes
were detected in the output of the final decryption. Their gitlab issue on
the attack can be found at https://gitlab.com/swisspost-evoting/

e-voting/e-voting/-/issues/1.

Production of verification data In our previous report we noted that while
the production of data for verification seemed adequate it was not clear
that the data was being appropriately verified; this remains the case.

Ambiguous and unaligned specification In our previous report we noted
differences between the “Protocol of the Swiss Posting Voting System”
document and the “Swiss Post Voting System: System specification.” The
specific examples we raised have now be rectified but several key differences
still remain as detailed elsewhere in this report. There are also differences
between the System Specification (which includes some verification) and
the Verification Specification.
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Problems with verifiability specification The specific issue we raised have
been addressed but problems still exist as detailed elsewhere in this report.

Problems with security definitions We highlighted in our previous report
that the security definitions did not capture the properties required. These
issues have not been resolved.

Section 2.1.1 We noted that the electoral board was not adequately described
in the document. This has improved somewhat but issues remain as de-
tailed else where in this document.

Function H Our recommendation to define the function H has not been im-
plemented.

KDF Our recommendations on both the definition of KDF and the choice of
KDF have been implemented.

Section 7 Most of our recommendations on section 7 have not been imple-
mented; several of the definitions remain incorrect.

DDH We highlighted that DDH was defined incorrectly which Swiss Post has
now fixed. An analogous issue exists in the definition of ESGSP which
has not been fixed.

Groups and generators Our recommendation on verifying the group param-
eters as part of the VerifyConfigPhase protocol has been implemented
though this aspects of VerifyConfigPhase protocol are found only the ver-
ification specification and not in the proof document.

Product of primes Our recommendation on verifying the product of primes
has been implemented.

Logs We recommended the way in which logs are created, stored and verified
be detailed. Some additional information has appeared in the verification
specification but more details are still required as described elsewhere in
this report.

Section 12.2.1.3 We noted that the way in which the election public key is
transmitted was different between different documents. This has now been
rectified.

Section 12.2.1.7 In our previous report we asked how the system enforces
that the ballots contained a valid selection of answers. Swiss Post has
now explained that is accomplished using the allow list. We encourage
them to update the documentation to make this clearer.

Section 15.1 In our previous report we noted that the definition of IdealSe-
tupVoting was unclear. The definition is mostly hinted at in the caption
of Figure 25 but this leaves several variables undefined. This has not been
rectified.
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Section 15.1 We had complained that the claims about what Lemma 1 proved
were not correct. Swiss Post has not removed the claims in question.

Section 15.1 We noted that since the public election parameters were not
checked Lemma 1 does not hold since the there is no guarantee to have a
SGSP instance. This issue has not been addressed in the proof document
though the relevant checks are listed in the verifier document.

Section 16.2.1 We noted that the game for ballot rejection did not appear
to align with either the system or the required security properties. Swiss
Post appears to have made an effort to address but the problem is still
present.

Figure 33 We noted that Bpriv was never designed to be used as a stan-
dalone definition but in conjunction with strong-consistency. We recom-
mend Swiss Post either prove the system has strong-consistency or explain
why proving strong-consistency is not necessary, since this is a significant
departure from the literature. Neither has been done.

Ballot privacy game We made many comments on figure 34. Several of our
comments have been implemented but several also remain unresolved. At
present the game still does not capture the property of privacy as described
the ordinance.

A.7 Status of Gitlab issues we opened

We briefly discuss here the status of the various Gitlab issues we have been been
involved in including those opened before the review process. Note, we have
taken the issue numbers from Gitlab and hence the list below is not consecutive.

Documentation Issue 1 Discussion about responsible disclosure definition
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/

-/issues/1

To our knowledge no changes have been made as a result of the discus-
sion of the issue. We remain concerned that the restrictions on disclosure,
particularly when the finding is discovered close to an election, might not
be the public’s interest.

Documentation Issue 2 The algorithm GenCMTable allows an adversary to
recover the election event’s set of possible short return codes
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/

-/issues/2

The issue raised has now been patched. The fact that the issue was not
immediately obvious but hidden by the notation is frightening. We think
this issue is a great example of the care that must be taken in analysing a
system of this complexity and the paramount importance of clarity in the
documentation.
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Documentation Issue 3 Various minor issues and potential issues
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/

-/issues/3

Many of the issues raised in this report have been resolved. However,
there are notable exceptions:

• there are still mistakes in the cryptographic definitions;

• the way in which parties authenticate to each other is still problem-
atic;

• the alignment between the protocol and the ordinance is still prob-
lematic.

The current status of these issues is discussed at various places through
out this report and I will not repeat them herre.

Code Issue 1 Insufficient Signature Validation of the Election Public Key re-
sulting in possible attacks against individual verifiability
https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/issues/

1

We discuss the issue in the first dot point of 1.1. The attack is still
possible on the protocol as described in the current documents but this
should be rectified in the new versions.

Verification Issue 1 https://gitlab.com/swisspost-evoting/verifier/verifier/

-/issues/1 This issue is confidential at the time of writing, but visible
to some other users of the SwissPost gitlab.
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B August Report

B.1 Introduction

We have, in a limited time, attempted to read and consider all the documents
available for Scope 1 of the review of the Swiss Post e-voting system and the
Swiss Federal Chancellery’s updated requirements, namely:

• The Draft of April 28, 2021, of the Federal Chancellery Ordinance on
Electronic Voting (OEV);

• The Cryptographic Primitives of the Swiss Post Voting System, Version
0.9.5;

• The Protocol of the Swiss Post Voting System, Version 0.9.10.

In some cases, we also looked for clarifications in:

• The System Specification of the Swiss Post Voting System, Version 0.9.6.

This draft should not be considered a complete review - we have read all
the documents, but there could be subtle interactions that we have missed. It
should, instead, be considered as a list of suggestions for improvement, which
we hope to refine as we see improved documents. In some cases, we think we see
an error; in others, we simply did not understand, and seek further clarification
for a followup draft.

This report is arranged according to the documents it analyses. We first
consider the federal chancellery’s new ordinance draft, then the cryptographic
primitives, and finally the protocol and its security proofs.

Summary The description of the protocol is enormously improved from prior
versions. We would like to thank Swiss Post for the much-improved readability.
This makes it much easier to understand and examine the underlying logic,
something that we have struggled to do for earlier drafts.

This improved clarity does make some gaps evident which have probably
always been there, but are now much more obvious because most of the rest is
clear. This is truly an improvement, and we hope the attached observations can
help improve it further.

Our (preliminary) conclusions on the cryptographic protocol documentation
are as follows:

• The current protocol does a good job at preventing the attacks that were
previously proposed. However, it is quite visible that, in many places,
the protocol is the result of a long evolution and has become an addi-
tion of patches. For instance, while reading the protocol description, we
wondered why the pkidi are ElGamal encrypted with the CCR public key,
while the BCKid

2·kid term is sent in clear to the CCR’s? We could not
find any explanation in the cryptographic protocol description document,
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but then found a discussion in Section 5.1.4 of the protocol specification,
which explains that this layer of encryption is indeed not needed. We can
however imagine that it adds a relatively significant amount of latency on
the server side.
We would strongly encourage to consider the design of a cleaned, mini-
mal, version of the current protocol, and to add an extra section in the
cryptographic protocol document, that would offer a clear view of the role
of each cryptographic operation (and what would break in the protocol if
each of these operations were missing). We suggest simplifications of the
protocol in several places in the document, but it is clear that much more
can be done, with expected benefits in security and in efficiency.

• The security model adopted in the system does not always seem to be
aligned with the OEV requirements. In particular, the structure and the
role of the electoral board is presented in different ways in the document
threat model, in the protocol specification, and in the security proofs. It
does not seem to comply with the OEV in the last two cases.

• In a similar spirit, it is currently extremely difficult to match the security
definitions with the OEV security requirements. It would be very helpful
to add a few paragraphs explaining what each step of the security games
is doing, and why the security definitions offer the necessary guarantees.
We highlight several places where we could not understand why the cur-
rent security definitions would offer the desired guarantees. Especially
with privacy it seems clear that definition does not demonstrate that the
cryptographic protocol meets the requirements, as required by 2.14.1 of
the technical requirements.

• The security proofs remain very high level, and it is extremely hard to
be convinced that they are correct. In particular, there is essentially no
reduction offered between any two consecutive game hops, but only claims
that they must be indistinguishable based on some underlying assumption.
Quite often, it is not obvious that the claims are justified and, without
writing all the missing proof details, we observed several places where
they simply seem to be incorrect. In some cases, it appears that attacks
against the system could work – this is only based on the cryptographic
protocol specification, and we do not know if they would work on the real
system. Writing the actual security reductions that justify why two games
are indistinguishable would make the document much more convincing.

• A full detailed description of the verification protocol is a crucial part of
verification soundness - without it, we cannot make any concrete analysis
of either individual or universal verifiability. We have identified some gaps
in the proof in each case, but we hope to make a more complete assessment
when the full details will be available.
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B.2 Observations regarding the OEV, Draft of 28 April
2021

The new draft ordinance document clarifies many of the requirements that were
present in the previous version, which is a very positive thing. As a downside,
we feel concerned that it also matches more and more closely what a properly
implemented version of the Swiss Post protocol should be doing. Of course, there
is a low-level design space that is quite open and that other system providers
could explore. But it also does nothing to offer incentives to the design of
stronger systems. As a result, it does not offer any incentive for a system
supplier (Swiss Post, or any other one) to explore the possibilities of offering
something more secure than the minimum that the OEV requires.

Would it make sense to refine the requirements by identifying various grades
at which security properties are realized by a system? These could be identified
from the properties discussed in the dialog of 2020, so that a system would not
just be declared to be compliant, but would also receive a grade, so that cantons
would have the possibility to choose a system that obtains a higher grade?

Here are some possibilities that come to our mind in particular:

• The notions of individual and universal verifiability that are required here
are much weaker than those that are standard in the academic literature
(the standard notions in the literature are incompatible with the assump-
tion of a trusted print office, or of control components among which one
must be honest). Would it make sense to offer a higher grade to a system
that would remove some or all of the current trust assumptions?

• Articles 2.9 and 2.10 of the annex lists participants and channels that may
be considered trustworthy. It would be interesting to value systems that
would not need to consider as trustworthy some or all of these compo-
nents. (We would also query the terminology, though this is possibly a
matter of translation—we would generally have said “trusted,” which is a
protocol property, while “trustworthy” is an inherent property of a par-
ticular instance. Probably “trusted” could be a shorthand for “assumed
by the protocol to be trustworthy.”)

• The print component is currently a central trusted component. Exploring
protocols that would reduce the requirements on this system component
should be valued.

Here are some more specific remarks:

• We are not sure whether the OEV states anything about the handling
of a failure event in the cryptographic protocol (say, a system compo-
nent observes that a ZK proof produced by an other control component
does not verify) – the OEV seems to rather focus on hardware failures,
which are not necessarily a sign of malfeasance. Intuitively, it would seem
that a control component cryptographic failure should be taken very seri-
ously, and the offending control component should probably be removed,
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whereas a cheating client is expected and should not necessarily result in
strong action. However, the requirements do not currently require (and
the protocol does not provide) accountability, so it may not be possible
to identify the source of the problem. As a result, and in the absence of
any accountability or robustness requirement, and of a description of what
should happen in case of failure in the protocol specification, it appears
that the voting system should just be halted. But this is also opening an
important channel for denial of service attacks, and the impact of such
a decision would probably be so high that it may not happen even if it
would be technically sound.
Would it make sense to add requirements of accountability and robustness
in the OEV?

• We are concerned that requirement 2.7.3 of the OEV might just be un-
realistic (or at least conflicting with the usability requirements that are
stated elsewhere). And, indeed, we did not find anything in the protocol
documentation that would help satisfying requirement 2.7.3. If a voting
client simply gets the voting application from the untrusted voting server,
then the voting server can send a voting application that will encrypt the
votes with incorrect keys (or encrypt with the correct keys and send the
votes in clear in parallel to the honest protocol), . . . One could imagine to
ask the voters to download a local copy of the voting application, hash it,
and compare that hash with something printed on the voting card. But
this is obviously not usable for a regular voter. And any check performed
in the voting application itself could be bypassed: the server can offer an
application that will claim to be authentic. An alternative would be to
have a signed stand-alone voting application rather than a web applica-
tion, but this also raises practical difficulties. So, while our opinion is that
the Swiss Post system does not satisfy Requirement 2.7.3, we also do not
have any reasonable suggestion to make on how that requirement could
be satisfied.
Would it make sense to revise this requirement in the OEV?

B.3 Review of “Cryptographic Primitives of the Swiss
Post Voting System” (Version 0.9.5)

We follow the order of the document. Next to each item, we provide a label:
– Improvement – indicates that we do not believe that the comment is re-

lated to something critical in the system. Addressing such items would typically
make the system more efficient or more robust.

– Recommendation – indicates that the comment (or the question) is related
to something that may be critical in the system and should be addressed.

Algorithm 3.1 – Improvement – It appears that this algorithm may be very
inefficient when m is of the form 28i + s where s is small. For instance,
when s = 0 it may be expected to loop around 256 times before it gets a
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suitable r (this may happen quite often in GenPermutation, for instance).
It would be more efficient to truncate r to the bit length of m− 1 so that
it would take on average 1.5 iterations of the algorithm before finding a
suitable r.

An alternative, that would avoid the need of a loop, would be to pick r as
a random integer of byte length byteLength(m− 1) + 10 (where 10 is a se-
curity parameter), and then set r ← r mod m. The resulting distribution
would be almost perfectly uniform (in the sense of statistical distance, and
provided that the random bytes are uniform).

Algorithm 3.6 – Recommendation – It appears that this algorithm could lead
to strings and integers that do not represent the same “thing” having the
same hash: the IntegerToByteArray algorithm can produce any ByteArray,
including some that would be the encoding of strings.

An alternative, used in other systems (e.g., in ElectionGuard), is to en-
code integers as strings, and then to only process strings. There certainly
are other options, e.g., prepending all hashed elements with a typing in-
dication, just as 0x is used to indicate a hex representation.

This domain separation is discussed in Section 3.2 but does not seem to be
correct.The property is used in the “Computational Proof,” Definition 11,
which states that H is “a hash function with domain separation, thus the
list of variables is encoded uniquely into a binary string.”

We do not see how this can be exploited in the present protocol, but it is
also uncomfortable to need to care about this, and the document does not
offer any suggestion that this has been checked, since the hash function is
just assumed to be ideal and to offer domain separation.

Section 4.1 – Improvement – The default security level with |p| = 2048 is
indeed accepted in some reports, but for relatively short term security,
e.g., until 2030 for the two referenced reports. Given the importance of
long-term security for votes, we would recommend to adopt the extended
security level. By comparison, ElectionGuard adopted |p| = 4096 bits [12].

Algorithm 4.1 – Recommendation – It appears that this algorithm expects
|p| to be a multiple of 8. As other choices might be possible, at least for
testing, it would make sense to make that requirement explicit.

Section 5 – Recommendation – There, and in other places: “Telerius” should
be spelled as “Terelius”.

Section 5.1.2 – Improvement – The algorithm that selects the matrix di-
mension is surprising. The main advantage of the Bayer-Groth mixnet
against the Terelius-Wikström mixnet is that it leads to much more com-
pact proofs (the algorithm is considerably more complicated otherwise,
and we would advise to switch to the Terelius-Wikström mixnet if the size
of the proofs is not a concern: the implementation would be much more
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straightforward to review and maintain). But the Bayer-Groth mixnet of-
fers most of its benefits when we can arrange the ciphertexts in a square, or
nearly square, matrix (slightly different matrix formats may be beneficial
depending on the size of the parameters p and q and optimization goals).
However, the algorithm that is adopted here may lead to a matrix of any
possible shape, including a single line matrix, as the document explains.

If, for your purpose, the Bayer-Groth mix-net works best with square
matrices (as it is indicated in the document), why not extend the input
list of ciphertexts with enough (1, 1) ciphertexts (which are encryptions of
“1” with randomness “0”) to reach an optimal matrix format? In the worst
case, for N ciphertexts, this would require adding 2

√
N extra ciphertexts

in the mixing process, which seems to be a negligible amount of extra work
when N is large enough for caring about the protocol execution time. It
will then be immediate to remove the “1” plaintexts from the output. And
this will make it always possible to obtain the benefits of the Bayer-Groth
mix-net.

Algorithm 5.6 – Recommendation – Given the other parameters of the sys-
tem, this algorithm seems to only generate 512-bit generators (squared
256 bit values). This does not fit the standard discrete logarithm assump-
tion, which would pick uniformly random generators in Gq. It would then
be either necessary to introduce a new computational assumption stating
that the DL problem is hard for the special generators that are selected
here, in order to obtain a sound security proof (we do not recommend
this approach), or to pick the generators uniformly (we recommend that
approach).

One option would be to use a key derivation function, or the SHAKE128
algorithm that is used in Algorithm 4.1, in order to produce a uniformly
random element in Z∗p and to square it.

B.4 Review of “Protocol of the Swiss Post Voting Sys-
tem” (Version 0.9.10)

This document is vastly improved compared to the previous versions that we
saw, which makes it much more useful, and also helps spotting possible short-
comings or suggestions for improvements.

We start with some general remarks, then review the document section by
section.

B.5 General overview

Production of Verification Data: in general the system seems to be produc-
ing enough data to allow for the verification of election within the allowed
trust model. (Caveats around authentication and data consistency apply).
However, as we have already noted, if this data is not carefully verified
attacks are possible.
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Ambiguous and Unaligned Specification: It’s really unclear what’s hap-
pening with the spec. The system spec and the proof are too different
protocols. Moreover, there is very poor alignment between the mate-
rial released (spec, proof, etc) and the draft ordinance. Issues included
differences in system participants, communication channels, security re-
quirements, etc.
Example:

• Does the voting client send the data directly to the CCRs or via
the voting server. Figure 21 in Section 11.2 in the proof document
shows this occurring through the voter server whereas Figure 8 of the
system specification has this happening directly.

• The ordinance would seem to suggest it must send it via the voting
server since no channel exists between the control components and
the user device

• The ordinance now refers to set-up component and print component
while the documents still refer to print office. We assume that the
spec should be explicit about the set-up component and print com-
ponent, and split the (current) role of the print office in two parts.

It will not be possible to properly assess the compliance of the system
with the ordinance until it is clear what the system does and how this is
meant to align with the ordinance.

Problem with Verifiability Specification The current description of the ver-
ification is inadequate, as various verification steps are missing. For ex-
ample:

• Public system parameters are not checked; this breaks privacy and
integrity, as detailed below.

• The voting server can fudge much of the information that passes
through it (Election key, user submissions); this breaks privacy and
integrity. For example, by providing inconsistent views of the voters’
confirmation key to the the CCRs.Improved verification and strong
mechanisms to deliver configuration information would be needed.

Problems with Security Definitions The definitions in the proof document
do not seem to capture the properties required. For instance, we explain
below why we believe that the definition of privacy is too weak, and that
the “ideal setup” does not offer the properties that it is claimed to offer,
while this would seem to be crucial for individual verifiability.

B.6 Section 2

Section 2.1.1 – Recommendation – The parties include an Electoral Board,
which is matched to one control component from Section 2.1 of the OEV
Annex. However, in Section 12.1.2.2, it appears that the Electoral Board
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is really one single party, that receives a secret key from the print office.
Furthermore, it appears that this party is then also fully trusted (see, for
instance, the definition of privacy, where at Step 4 of the bpriv game, it
is indicated that EBsk is never known by the adversary. This appears to
be in contradiction with Article 2.9.3 of the OEV Annex. In Section 13.2,
it also appears that the electoral board is actually composed of multiple
parties that keep shares of this secret key. Who computes these shares,
and how are they distributed?
Our suggestion (see also comments on Section 12.3) would be to have the
Electoral Board as a control component generating the Electoral Board
key in a distributed way (just like the other control component do), and
to leave all the decryption operations to that control component, while
removing the decryption steps by the CCMs.

B.7 Section 3

Key compression – Improvement – The justification that is offered in Section
3.1 for the compression of excess keys is not very convincing. As far as
we can see, the length of any ciphertext is imposed by the format of the
election, and should be be part of the verification steps before decryption.
So, the compression of excess keys does not seem particularly helpful.
However, it makes the specification more complex.

B.8 Section 4

Symmetric encryption algorithm – Recommendation – There should be
a specification of which symmetric encryption algorithm is used. The
document that specifies the cryptographic primitives does not specify any
symmetric encryption algorithm either.

B.9 Section 5

Function H – Recommendation – The function H with range Gq is undefined
in this document, and in the “Cryptographic Primitives” document. It
should be defined (and it would be useful in other places, including for
selecting the generators of the Pedersen commitments).

If RecursiveHash is intended to be used here, its definition should be ex-
panded to input elements of Gq.

B.10 Section 6

Pseudorandom KDF – Recommendation – Definition 3 (Pseudorandom KDF)
is much weaker than what is usually required from a KDF (e.g., [10]):

• It is normally expected that a KDF can be called many times (like
a PRF), while the current definition only provides one single output
(like a PRG).
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• It is normally expected that the distribution of the inputs of the KDF
can be correlated to adversarially chosen/known elements, but this
is not the case here.

This creates a gap in the proofs. For instance, all the CCRs use the KDF
via the DeriveKey function on a single k′j value and multiple vcdid values
(Section 12.1.1.5). It is immediate to design a KDF that would satisfy
Definition 3 and would lead to a completely insecure system when it is
used in this way (e.g., the definition is compatible with a KDF that would
leak k′j).

KDF choice – Recommendation – The KDF function specified here is the
MGF1 function. However, the cryptographic primitives document does not
discuss this, and uses SHAKE128 for similar purposes in Algorithm 4.1.
We would recommend to specify a single function that would be used as a
KDF. As a third option, we would recommend to consider the HKDF func-
tion [10], which is designed to be particularly robust, has been adopted in
TLS 1.3 for instance, and for which numerous well-reviewed implementa-
tions exist.

DeriveKey – Improvement – In the DeriveKey algorithm, why is the KDF func-
tion used to produce an output of byteLength p bytes, rather than of
byteLength q − 1 bytes? It is also slightly surprising to see that the loops
iterates the KDF on k, while other algorithms (e.g., the algorithm for
deriving the commitment key) iterate on a fixed k concatenated with a
counter. We would recommend sticking to that approach, which for in-
stance decreases the (low) risk of a loop that would never end, and is the
one used in most standards (e.g., FIPS 186-4).

B.11 Section 7

Completeness – Improvement – Definition 4 seems overly complicated.

• Why would A pick a (st, w) pair, rather than quantifying on all pairs
in the relation as it is usually done?

• Why do you care about defining the tr variable, which appears to be
unused?

Soundness – Recommendation – Definition 5 is also non-standard. In the
traditional soundness definition (e.g., in [8]), there is a universal quan-
tification on all the false statements (this is stronger than Definition 5).
What is defined here rather looks like existential soundness (Attack Game
20.1 in [4]). The notion that you are really looking for should be clarified.

Special HVZK – Recommendation – Definition 6 is not a definition of spe-
cial honest verifier zero-knowledge, which is a definition that only makes
sense in the context of Σ-protocols. The usual definition of Special HVZK
is available in [4, Definition 19.5] for instance. In particular definition 6
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misses the requirement that the simulator always produce accepting tran-
scripts.

Simulation soundness – Recommendation – In Definition 9, at Step 4 of the
simulation soundness game, the notation (st∗, π∗) 6∈ T looks odd. T is
supposed to be the list of programmed RO queries. As such, there is no
reason for T to contain (st, π) pairs. We imagine that what is meant here
is that (st∗, π∗) is not in the list of input outputs of the S ′ps oracle, and
that this list should be maintained by S ′ps?

Simulation extractability – Recommendation – Small typo at the end of
the definition of ext: the final w should be w∗.

B.12 Section 8

Fiat-Shamir transform – Improvement – The definition of the Fiat-Shamir
transform in Section 8.2 looks relatively ad-hoc, in particular when multi-
ple challenges are needed and an extra “1” is concatenated to the hashed
message. Besides, it seems slightly inconvenient that the size of the chal-
lenges is, by definition, the length of the output of the hash function.
One more flexible and uniform option would be to compute the hash, pos-
sibly as described in the document when there is one single challenge, then
to derive the challenges by using a KDF on this hash and constant strings
identifying each challenge that is produced. In the case of the HKDF func-
tion, the hash could be computed using the “extract” function of HKDF,
and the various challenges could be produced using the “expand” function.

B.13 Section 9

DDH The definition of the DDH game (Fig. 16) seems wrong—the adversary
should get g1, g2, . . . , gl as well.

SGSP and DDH – Improvement – In Section 9.2, why are you requiring
both the hardness of DDH and SGSP in order to imply the hardness of
the ESGSP problem? Assuming that SGSP is hard seems to imply that
DDH is hard as well in the kind of group that is considered here.

SGSP? – Improvement – The reliance on the hardness of the SGSP problem
seems to be quite specific to this voting system (as you are pointing it, it
was introduced for the Norwegian voting system, from which this system
is derived). We are not aware of any specific study of the hardness of
this problem (contrary to DDH, for instance) and, as such, this does only
inspire limited confidence. It would be satisfactory to be able to remove
that assumption, and rely on DDH instead. This would of course be an
important change in the protocol.
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B.14 Section 10

CRS – Recommendation – It is confusing that the group description and pa-
rameters are made available in a crs. The string in the crs model is as-
sumed to be sampled according to some specific distribution, as a trusted
setup, and it is typically used in security proofs in such a way that the
challenger produces that string together with some trapdoor/auxiliary in-
formation. Here, we do not want to assume anything about this crs: we
want it to produced in a verifiable way. So, the generation of the parame-
ters should be part of a setup protocol rather than claimed to be a crs, and
the outputs of this protocol should be verified by the concerned parties.
These verification steps appear to be largely missing for the moment.

Groups and generators – Recommendation – The group parameters are
produced in Section 10.1, but we do not see where they are verified. It
seems very important, for privacy and verifiability reasons, that they are
verified early enough. Ideally, the CCR’s and CCM’s would check that the
ElGamal parameters are correct, and the CCM’s would also check that the
commitment keys are correctly produced. A lighter version would dele-
gate the trust to the auditors, who would verify all these parameters in
the VerifyConfigPhase protocol. But this is weaker, and possibly too weak
because it assumes that there is a trustworthy auditor running the Verify-
ConfigPhase protocol at the right time, while it would be preferable that
auditors could perform their task at any time.

Product of primes – Recommendation – The fact that the product of any
subset of ψ primes remains smaller than p, as discussed in Section 10.3,
should be an explicit part of the VerifyConfigPhase protocol.

B.15 Section 11

Logs – Recommendation – The Logs appear for the first time in Figure 19.
They however play an extremely important role in the protocol, and are
used basically everywhere. There should be a dedicated (sub)section about
these logs, possibly before Sec. 11.1, explaining how they are created, who
can write them, how their authenticity has to be checked, what security
guarantees they offer, . . . In effect, there are several cryptographic proto-
cols missing here, despite their paramount importance.

Election public key – Recommendation – It is surprising that the election
public key ELpk is not transmitted to the CCRs: such a communica-
tion would seem to be the natural way to inform them about the value
of that key. In the current description, how is ELpk given as input to
VerifyBallotCCRj? This should be clarified. If the CCRs do not have ac-
cess to a properly certified version of ELpk, then it appears that individual
verifiability (among other properties) could be broken: a malicious voting
server could provide a fake ELpk∗ to the voters and to the CCRs, who
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would then validate ballots that would later be declared invalid by the
auditors and the CCMs.

B.16 Section 12

Section 12.1.1.1 – Improvement – Why is k′j sampled from Z∗q? It seems that
any random string of suitable length (128 bits, or 256 bits) would be what
is needed here.

Section 12.1.2.2 – Recommendation – The EBsk key is a single key generated
by the print office. However, in Section 2.1.1, it is indicated that there
is an electoral board that has a shared version of this key. If the key is
expected to be shared, then we would assume that it is generated in a
distributed way, as it is the case for the control components.

Section 12.1.1.4 – Recommendation – Some of the notations are hard to
follow, and it would help to make them more consistent/explicit. For
instance:

• At Step 5, it would help to state explicitly that hpccid is the vector
of squared partial Choice Return Codes.

• At Step 6, the definition of hpccHashid is confusing: we apparently
have a vector that is made of a sequence of hashes, rather than a
single hash (the same issue comes back in Item 7 of Section 12.2.1.6),
but there is no index for that sequence. The notations are different
and more clear in the Specification document. They could be adopted
here.

• At Step 7, why do we need to add pTable in the logs? Section 10.3
indicates that they already are in the crs.

Section 12.2.1.2 – Recommendation – At the end of item 6, a ν notation
appears (it comes back in some other places). Is it just ρ?

Section 12.2.1.3 – Recommendation – The VerifyBallotCCRj function takes
ELpk as an input, and it appears that it is through this input that the
CCRs learn the election public key – we could not find any other channel
by which they could learn it, and the System Specification document is
more problematic since it claims (Figure 8) that the CCRs learn that
key directly from the voting device, even though there is normally no
communication channel from the voting device to the CCRs.

This seems to enable an attack against individual verifiability, and against
the vote rejection property in particular: the voting server can give a
voter and the CCRs an incorrect election public key, this will lead to an
accepted ballot (since the CCRs will perform their verification against
that incorrect public key), but the ballot will be rejected after mixnet
decryption, assuming that the CCMs decrypt with the correct election
public key.
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Section 12.2.1.7 – Recommendation – At Step 5, why is it enough to check
that there are entries for each of the ψ choices? Don’t we have more specific
ballot validity rules, e.g., in order to express that there is an answer to
each single question on the ballot, and that we do not have no answer to
one question and two answers to another question?

Section 12.1.1.8 – Improvement – The benefits of the Keystore do not seem
very clear. Why not adopting a simpler process in which kid is derived
from the Start Voting Key, that would go through PBKDF, then be ex-
panded to Zq using the H function? This completely non-interactive pro-
cess seems to be just as secure, would save storage on the server side, and
possibly avoid one round of communication between the voting client and
the voting server.

Section 12.2.2.3 – Improvement – At Step 2, the notations are surprising.
One would expect that lVCCid would be the product of the lVCCid,j and
not a hash of something else. (Note we are not saying the hash isn’t needed
for security, merely that the notation is confusing.)

Section 12.2.3 – Recommendation – It appears that LogsPO is missing from
the inputs of the VerifyVotingPhase function (they are used at the third
step of the parsing phase).

Section 12.3 – Improvement – It is unexpected that, at each step of the online
phase, a decryption with a CCM key happens. We do not see any good
reason for that, and it seems to have several downsides:

• If the CCM keys matter (which is not clear given that they are not
produced in a verifiable way, implying that the global CCM key could
be set to “1” and offer no confidentiality at all if the extra key from
the trusted print office wasn’t added – see also our remark on Section
12.1.2.1), then it would be important for each CCM to verify that
it uses its keys to decrypt ciphertexts that it should decrypt. This
would mean, among other things, running most of the steps of the
VerifyConfigPhase, VerifyVotingPhase and VerifyOnlineTally functions
before performing decryption. This is missing for the moment.

• It increases the latency of the mixing process. In a mix-net, most
of the work is typically executed in parallel. Each mixer computes
re-encryption factors in advance, then the input ciphertexts are shuf-
fled and re-randomized very fast (it just takes 2 multiplications for
a standard ElGamal ciphertext) and passed among the mixers, then
all the mixers start computing their proofs in parallel, all the proofs
are verified, and the decryption starts, again as a parallel process
between all the key holders. When decryption is needed after each
mixing step, the process becomes much more sequential: full ex-
ponentiations are needed before passing any ciphertext to the next
mixer, and verification steps become important before running any
decryption operation.
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Unless there is some very good reason, which we do not see, for having
one round of decryption after each mixing operation, we would recommend
to remove those sequential decryption steps, and to run decryption as a
parallel process after the final mixing and verification.

Section 12.3.2.1 – Recommendation – It appears that CCMm′ uses the elec-
toral board secret key EBsk. How does it obtain it? It is also stated in
other places (Section 2, Section 18) that this key can never be known to the
adversary. Does that mean that CCMm′ can never be corrupted? This
seems incompatible with the requirement that any CCM is potentially
corrupted, provided that one of them remains honest. See also discussion
about the bpriv game in Section 18.

B.17 Section 13

Authentication – Improvement – The explanations contained in this section
should come much earlier, as part to a description of the setup. Given
the threat model, most protocols of Section 12 looked completely insecure
until it is added here that channels are authenticated, and that public
keys are verified through appropriate ceremonies.

B.18 Section 15

Section 15.1 – Recommendation – The definition of the IdealSetupVoting pro-
tocol is both very important and very unclear, as it is mostly hinted in
the caption of Figure 25. Several variables seem to be just undefined:
GenVerDat$, the π$ proofs, . . . . There should be a detailed definition of
this protocol, in order to make a review feasible.

Section 15.1 – Recommendation – Along the lines of the previous item: It is
claimed that ”The real setup is correct and private if...” That just does
not seem true because the adversary may very well know all the return
codes which clearly would seem to not be a private setup. For example
if the encryption in GenCMTable was weak the adversary could break in
and learn the return codes. We would suggest changing the ideal version
of setup to return a random GenCMTable (with no relation to the return
codes).

Section 15.1 The fact that public system parameters are not checked breaks
Lemma 1, which relies on the SGSP problem, while there is no guarantee
to have a SGSP problem instance. This break the sent-as-intended and
recorded-as-confirmed proofs as well, since they rely on Lemma 1.

Section 15.2 – Recommendation – As it is written, it is not clear that a
compliant ballot would be a valid ballot, contrary to what is claimed. A
valid ballot has Ẽ1 = E1kid (unless the exponentiation proof is not sound).
But a compliant ballot can have Ẽ1 being any encryption of the message
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encrypted in E1 raised to the power kid, that is the randomness of the two
ciphertexts can be completely unrelated, which is not the case in a valid
ballot.

Section 15.2 The notion of CompliantRegisteredBallot is problematic as it is
not self-contained. As it is, LsentVotes,h and LpCC could just be anything,
which makes it hard to make sense of this definition.

B.19 Section 16

Section 16.2 The Recorded-as-confirmed definition mentions that the auditors
check that all control components use the same Confirmation Key CKid as
a basis, but this is not mentioned in Algorithm 12.2.3 (VerifyVotingPhase).

Section 16.2.1 Section 16.2 contains an analysis of whether it is possible for
the adversary either to get a vote confirmed when it should not be, or block
its confirmation when it will be counted. Unfortunately, the games do not
seem to adequately capture this. In particular, for the Vote rejection
game:

• In the real protocol, all the messages are relayed through the un-
trusted Voting Server, so the attacker has the power to reorder, drop,
or modify the messages. It might not send consistent messages to the
CCRs, it might withhold a confirmation hoping that the voter will
resend it, etc. The game (in Figure 30) doesn’t make it entirely clear
that this is permitted, but it should be—Step 11 is a little hard to
interpret on this point, but it should include full adversary control of
the communications in the ConfirmVote runs.

In summary, the attacker model should include the opportunity to
block, reorder or interfere with some or all channels via the untrusted
Voting Server.

• The game in Figure 30 does not seem to include multiple runs, but the
protocol allows for multiple confirmation attempts. So for example
a real attacker might be able to mix and match values from different
runs of the protocol, including perhaps some that it has interrupted—
this should be reflected in the game.

B.20 Section 18

Figure 33 – Recommendation – Bpriv [2] was never designed to be used as
a standalone definition but in conjunction with strong-consistency. Bpriv
on it’s own would allow an election system which publishes the voter’s
name next to the plaintext ballot to be considered private; it seems likely
similar problems occur in the definition used in the Swiss Post system.
If it is not the case, then explanations should be offered, since this is a
significant departure from the literature.
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Figure 33 – Recommendation – Several aspects of this game definition remain
unclear, which makes it hard to evaluate.

• At Step 3, writing that EBsk is unknown to the adversary seems to
imply that the last CCM can never be corrupted. Is that right?

• At Step 3 of the bpriv game definition, what is c?

• At Step 5, why does the challenger initialize the bb ballot box? It
seems that it is only used by the adversary, who has full control of
it.

• In the voting phase, we guess that access to the OHonestCCRexp
oracle is missing?

• In the tally phase, can the adversary decide to call theOHonestCCMoffline

oracle if he decided that CCMh is the online CCM (and conversely)?

Figure 34 – Recommendation – The use of sets fails to capture possible ballot
copying attacks on the cleaned bulletin board. In the game, the recovery
algorithm recovers all ballots, and not only honest ballots despite what
the informal description says which again may miss ballot copying attacks,
etc. (Strictly speaking the definition may not miss the issue depending on
how the set operations are interpreted but at human verifying proof may
well.)

Figure 34 – Recommendation – The definition requires that the two sets of
votes (V 0

h , V
1
h ) are balanced which we have never seen for a definition which

is going to always count as though bb0 anyway. Why this difference? How
can we be convinced that it does not introduce weaknesses?

Figure 34 – Recommendation – In the OHonestCCMonline oracle, when β = 1,
it appears that the ciphertexts that are mixed are not rerandomized –
they are just partially decrypted. As a result, the first component of each
ciphertext is not modified at all and this reveals the permutation that is
applied. This is probably not the intent of the authors.

Figure 34 – Improvement – In the OHonestCCMoffline oracle, the bbclean input
is never used. Is that expected?

Figure 35 – Recommendation – Some elements are not clear:

• In the OCastBallot oracle, at Step 5, how are the ν variables defined?
Are they just the v variables?

• In the OConfirmBallot and OVerifyVCC oracles, the ccβid and VCCid

variables are not defined. Why does one of them get a β and not the
other?

Top of p. 106 – Improvement – It is claimed, on p. 106, that an adversary
who would make sure that only one ballot is confirmed can trivially win
the privacy game. Why is it the case, since the announced tally is always
the one corresponding to β = 0?
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B.21 Section 19

Game vc.4 – Recommendation – Game vc.4 considers the possibility that a
maliciously generated lpCC might match something in the table despite
(pCCid,i) 6= pkidi . The proof states, “the bad event happens ... only if
there is a hash collision of some adversarial (pCCid,i) with some value
in the LpCC .” But the bad event could also happen if the adversarially-
generated (pCCid,i) matches something in the LpCC table, but not the
value it should match. There needs to be an argument that this cannot
happen, and it should depend on the algebraic properties of the code
generation - the elements of LpCC are exponents of primes, and it should
not be possible to generate a new value of that form by multiplying others
(at least, that is what needs to be proven). This proof will also depend
on the proper construction of the LpCC table.

To repeat the notation of our earlier attack, there needs to be an argument
that the adversarially-generated (pCCid,i) = (pCCid,2)(pCCid,3)/(pCCid,1)
can never match a valid (pCCid,i) including ones that the voter may not
expect. The adversary must be assumed to have access to LpCC and hence
be able to guess and check whether certain values are valid.

Assuming that the (pCCid,i) values are properly generated, they have the

form pkidi , so this requirement resembles the SGSP assumption. How-
ever, the reduction is not immediate because the adversary contributes
to choosing kid, since they have a role in constructing the table. For ex-
ample, if they could arrange matters so that kid = 0, then (pCCid,i) =
(pCCid,2)(pCCid,3)/(pCCid,1) would hold. (We do not think this is actu-
ally possible, but the proof should detail why not.)

We do not think there is a real attack here (though we are not sure),
because we think the prime-powers cannot be created in this way, but
there needs to be a proof of this.

Theorem 1 (sent-as-intended) obviously depends on this.

Game mRTC.3 – Recommendation – The reduction to the kdf function secu-
rity does not work, contrary to what is claimed here. This is because the
kdf function is called multiple times with k′h as only secret input, while
the kdf security game only allows for one single call. This does not lead to
a practical attack, because any standard KDF offers much more security
than what the form of security that is required in Section 6. But it would
be easy to build an artificial KDF that would satisfy the security defini-
tion given there, and would completely break the security of the voting
scheme.

Game bpriv.1 – Recommendation – There is a mention of a canonical gen-
erator Smix here, but we do not see how it is defined. Section 7.2.1 and
reference [25] only define canonical generators for standard 3-passes Σ-
protocols, but the shuffle argument does not fit that structure. It would
help, for completeness, to define Smix.
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Game bpriv.7 Public system parameters are not checked. This could make it
possible to generate the primes table so that the discrete log relation were
known. As a result, we would not have an instance in which the SGSP
problem can be expected to be hard, which breaks the proof.

Game bpriv.7 Even if the previous point is addressed, it is claimed that the
only way of distinguishing CKid and pCCid (among others) from ran-
dom group elements would lead to an adversary against the ESGSP prob-
lem. We do not see how this can be true, since CKid = (BCKid)

2kid and
(BCKid)

2 is not a prime integer. It turns out that this is not just a gap
in the proof: there is a potential privacy attack here that is not captured
by the bounds of the theorem and would succeed with much higher proba-
bility than what the theorem guarantees, even if that probability remains
relatively low.

Let us suppose, for the simplicity of the exposition, a very simple election
with two possible choices, one encoded with a prime p1 = 3 (it could be
any prime in Gq strictly smaller than 109), and the other with a prime
p2 ∈ Gq larger than 109, which is the highest value that BCKid can take.
(The attack can work with many more realistic choices, but the point is
to show the simplest version of the attack that contradicts the security
proof.) An honest voter submits his ballot, with a choice encoded as a
prime p (which is either 3 or the large prime, we would like to know). The
CCRs decrypt E2 and the adversary obtains pCCid = pkid . The return
code is shown to the voter, who is happy and submits his confirmation
key CKid = BCK2kidid . Now the voting server tests if pCC2

id = CKid. If the
test succeeds, then p = p1 since p2 > BCKid, and the attacker knows how
the voter voted. Otherwise, we say that the attack fails. So, the attacker
learns a vote in clear with probability 1 over the size of the BCK space,
which is 109 according to Section 20.5. That is not quite practical (even
though there are various ways to improve the attack quite a bit). But is
definitely much better than what the privacy theorem says.
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